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ABSTRACT

This study examined two sites from a Landsat scene of

portions of Honduras and Nicaragua. One site was examined

for potential water obstacles, and the other was examined

for cover and concealment provided by vegetation. The

results suggest that potential water obstacles can be de-

tected. It is not clear if vegetative cover and concealment

can be reliably detected. A study using better ground

reference information than was available is necessary to

answer that question. Several unsupervised classification

algorithms were used and compared. A histogram clustering

algorithm followed by a minimum distance classifier provided

results comparable to the much slower K-means and isodata-

type algorithms. Several methods to reduce the dimensional-

ity of the classification problem were examined, including

band subsets, between-band ratios, the principal component

transformation, and the tasseled cap transformations. Band

subsets provided adequate accuracy and is the easiest method

to implement.
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I. INTRODUCTION

A. MOTIVATION

The Armed Forces of the United States are responsible

for being prepared to conduct military operations anywhere

in the world on short notice. Accurate maps are essential

to successful military operations, so a great deal of effort

goes into creating, maintaining, and updating maps. In

fact, an entire Department of Defense agency, the Defense

Mapping Agency, exists for this purpose.

However, no matter how good a map was when it was creat-

ed, it is a static entity. Once printed, it is difficult to

update a map to reflect changed ground conditions. Also,

seasonal variations (which can have significant effects on

military operations) cannot always be completely included in

a map.

For military operations, accurate information on current

ground conditions is needed, since ground conditions signif-

icantly affect the ability of friendly and enemy forces to

move, shoot, and communicate. The formal process of analyz-

ing current ground conditions for their effects on military

operations is called terrain analysis [Ref. l:pp. 33-40).

In addition to maps, terrain analysis inputs include

information from other sources: interrogation; ground and

... .... ... ... .... ..... ... ... .. 1



aerial surveillance and reconnaissance; imagery interpreta-

tion; target acquisition and night observation devices; maps

and charts; and studies on transportation, trafficability,

cross-country movement, climate, and hydrography [Ref. 2:p.

2-2]. Many of these methods and sources rely on long-term

information gathering (e.g., climate, hydrography, maps, and

charts). The short-term information gathering methods

(e.g., ground or aerial reconnaissance) can give the enemy

information about planned operations simply because the

reconnaissance effort is detected. Also, most intelligence

collection methods are not really suited to rapid, large-

scale data collection on current terrain conditions.

"Satellites can cover far more territory than an air-

craft, and, of equal importance, they can photograph it all

in the same day so that intelligence staffs can see the

overall picture." [Ref. 3:p. 230) Though the quote in its

original context referred more to special photographic

reconnaissance satellites, the principle is clear: how to

rapidly gather the most current information on terrain

conditions.

Landsat thematic mapper (TM) imagery is used for a wide

variety of applications, including crop yield estimation,

forest inventory, urban land use mapping, and a variety of

other land use/land cover and resource management applica-

tions [Ref. 4:p. 1-2]. Since some of these applications are

related to items of interest in military terrain analysis,

2



Landsat TM imagery might be usable for part of military

terrain analysis. It has been found that

Landsat analyses usually cost less than 1 percent of the
cost of comparable aerial surveys. They are therefore
particularly useful for mapping inaccessible terrain.
[Ref. 4:p. 1-2]

Since this is exactly the type of problem identified here,

Landsat TM imagery may be useful in solving at least part of

that problem.

Another advantage of Landsat imagery is that, because of

its mission of earth resource observation, Landsat's orbit

is both regular and periodic. Therefore, it covers the

earth in a predictable pattern, so it gives no evidence of

any particular interest in a given area. Because its orbit-

al inclination is 96.22, Landsat covers the entire globe

between about 840 North and 840 South every 16 days [Ref.

4:p. 2-3].

B. OBJECTIVES

Using Landsat TM imagery it may be possible to develop a

computer-assisted determination of the terrain analysis

factors of concealment and cover and certain types of obsta-

cles with an acceptable degree of accuracy. Not only would

this save time in performing terrain analysis and provide

more information than a paper map alone; it would also

provide much more recent information about the area of

interest.

3



The primary research question examined in this study is:

can unsupervised pattern recognition algorithms be effec-

tively used on Landsat thematic mapper imagery to perform

parts of the terrain analysis step of the Intelligence

Preparation of the Battlefield process? Specifically, the

study will focus on the identification of obstacles and

cover and concealment. Because of the 30 x 30 meter pixel

size, relatively small obstacles will probably not be de-

tectable, but obstacles with distinctive spectral character-

istics or distinctive effects on the surrounding terrain

(like streams and swamps) may be detectable. Heavy vegeta-

tion, especially woods and forests, are particularly good

for providing concealment and some cover. Since forest

inventory is already one of the uses of Landsat TM imagery

[Ref. 4:p. 1-2], Landsat imagery may be useful in identify-

ing forests with good military terrain properties.

The Landsat TM imagery was analyzed primarily by using

the Land Analysis System (LAS), a software package optimized

for earth resource evaluation of Landsat imagery. Some

additional short computer programs were required where LAS

routines either did not perform exactly the required func-

tion or were not convenient to use. The output of the above

analyses was then used to produce a set of map overlays of

the various terrain analysis factors. Producing the map

overlays was the ultimate goal of this study.

4



C. LIMITATIONS

Due to the location and date of the Landsat TM imagery

(Honduras and Nicaragua, 24 March 1986) available for this

study, gathering ground reference information was impossi-

ble. Though 1:50,000 scale maps of the area were used for

the ground reference, they may not be, in all cases, an

adequate replacement for the on-the-ground verification of

factors that are important in this study (e.g., density of a

forest vs. the forest's spectral response pattern, identifi-

cation of irrigated cropland and crop identification).

The pixel size in Landsat TM imagery is 30 x 30 meters.

Many items of tactical interest, especially obstacles, may

not be distinguishable at this resolution.

This study will only look at a subset of the items of

interest in terrain analysis for a specific small area. The

results will mainly be an indication of whether or not more

research will be worthwhile on this subject rather than a

definitive answer to the posed research question.

D. SUMMARY OF RESULTS

The results of this study seem to indicate that poten-

tial water obstacles can be identified using Landsat TM

imagery. Several band sets and band combinations were

evaluated for their relative usefulness in detecting poten-

tial water obstacles. Several unsupervised clustering

5



algorithms were also evaluated. The results are presented

in Chapter IV.

A determination on the possibility of detecting vegetat-

ed areas providing cover or concealment could not be made.

The results in this area were mixed. Better ground refer-

ence information is needed before a definite determination

can be made. These results hold for all band combinations

evaluated.

E. ORGANIZATION

Chapter II provides a background on the concepts and

information that form the basis for this study. Chapter III

provides details on how the study was conducted. Chapter IV

presents an analysis of the results achieved in the study,

and Chapter V draws some conclusions and recommends further

research.

6



II. BACKGROUND

A. TERRAIN ANALYSIS

Terrain analysis is part of the U.S. Army's Intelligence

Preparation of the Battlefield (IPB) process, a formalized

situation and target development process that provides

commanders with the intelligence and targeting data needed

to plan and fight battles. [Ref. 1:pp. 33-40] Terrain

analysis focuses on the military aspects of terrain and

their effects on friendly and enemy capabilities to move,

shoot, and communicate (the basic tactical functions).

Terrain analysis includes the following five factors:

observation and fields of fire, concealment and cover,

obstacles, key terrain, and avenues of approach and mobility

corridors. While determination of key terrain and avenues

of approach are heavily dependent on a unit's size, mission,

and tactical situation, the other three factors are more

consistent.

Since weather can also have a significant effect on

terrain, and thus affect friendly and enemy capabilities,

weather analysis is also an important step in IPB [Ref. l:p.

38].

An obstacle map overlay is created which combines all

terrain and weather induced obstacles identified in the

7



above analysis. [Ref. 1:p. 38] Next, avenues of approach

and mobility corridors are identified, with emphasis on

areas where the enemy can move. The most viable avenues of

approach and mobility corridors are identified and overlays

are prepared depicting each one. These overlays are then

used in the final step of IPB, threat integration. Threat

integration integrates enemy doctrine with terrain and

weather information to determine how the enemy will fight as

influenced by terrain and weather.

1. Observation and fire

Observation is the influence of terrain on the

ability of a force to exercise surveillance over a given

area either directly or through the use of sensors. [Ref.

2:p. 2-12] Characteristics of terrain which restrict obser-

vation include hills, cliffs, vegetation, and manmade fea-

tures.

Fire is the influence of terrain on the effective-

ness of direct and indirect fire weapons.

Indirect fire weapons such as mortars are affected
primarily by terrain conditions within the target area
which may influence the terminal effect of the projec-
tile. Fields of fire for direct fire weapons such as
machineguns and automatic rifles are primarily affected
by terrain conditions between the weapon and the target.
[Ref. 2:p. 2-12]

2. Concealment and cover

Concealment provides protection from observation.

Cover provides protection from the effects of weapons fire.

8



[Ref. 2:p. 2-12] Concealment may be provided by terrain

features such as woods, underbrush, tall grass, and culti-

vated vegetation.

Concealment from ground observation does not neces-
sarily provide concealment from air observation or
from electronic or infrared devices. Concealment
does not necessarily provide cover. [Ref. 2:p. 2-12]

Cover may be provided by trees, rocks, ditches,

folds in the ground, buildings, embankments and similar

features. [Ref. 2:p. 2-12] "Areas that provide cover from

direct fires may or may not protect against the effects of

indirect fire; however, most terrain features that afford

cover also afford concealment." [Ref. 2:p. 2-13]

3. Obstacles

"An obstacle is any natural or artificial terrain

feature which stops, impedes, or diverts military movement."

[Ref. 2:p. B-3] Natural obstacles include rivers, streams,

lakes, swamps, steep slopes, dense woods, deserts, moun-

tains, cities, and certain types of unstable soil. Artifi-

cial obstacles are works of construction and destruction

executed to stop, impede, or divert military movement. They

include minefields, craters, antitank ditches, trenches,

roadblocks, deliberately flooded areas, extensive rubble,

and forest fires.

4. Key Terrain

A key terrain feature is any location or area whose

seizure or control affords a marked advantage to either

9



opposing force. [Ref. 2:p. 2-13] Types of terrain features

which are frequently selected as key terrain for tactical

units include high ground that provides favorable observa-

tion and fire over a significant portion of the operation

area and bridges over unfordable rivers.

5. Avenues of Approach and Mobility Corridors

An avenue of approach is a route for a force of a

particular size to reach an objective. [Ref. 2:p. 2-14]

The analysis of an avenue of approach at any level of com-

mand is based on the consideration of observation and fire,

cover and concealment, obstacles, utilization of key ter-

rain, adequate maneuver space, and ease of movement.

A mobility corridor is that part of an avenue of

approach that allows a particular-sized unit to deploy in

its doctrinal tactical formation [Ref. l:p. 38].

This study focused on the military terrain classifi-

cations of water obstacles and cover and concealment as

provided by vegetation.

B. LANDSAT

1. General Information

The Landsat series of satellites began with the

Earth Resources Technology Satellite (ERTS), launched in

July 1972. [Ref. 4:p. 1-1] ERTS was renamed Landsat 1 in

1975 to reflect its primary use as a land resources observa-

tory.

10



The second generation of Landsat satellites (4 and

5) carried the thematic mapper (TM) in addition to the

multispectral scanner (MSS) of the earlier Landsat satel-

lites. [Ref. 4:p. 2-1] The TM improved on both the spec-

tral (seven bands vs. three) and spatial (30 m vs. 82 m)

resolution of the MSS.

Landsat 4, launched in July 1982, developed early

communication and solar array problems that restricted it to

use of the MSS only. [Ref. 4:p. 2-1] Landsat 5 was

launched in March 1984 and is currently the only source of

TM imagery.

As the earth turns below the orbiting Landsat space-

craft, the TM and MSS scan the ground directly beneath in a

fixed width swathing pattern perpendicular to the direction

of the orbit. [Ref. 4:pp. 2-2 to 2-3] Both sensors have a

185 kilometer east-to-west swathing pattern. Swaths are

designed to overlap for complete surface coverage. Landsat

5 circles the earth in a sun-synchronous, near-polar orbit

at an altitude of approximately 705 km. The ground track is

repeated in a 16-day cycle totaling 233 orbits. Since the

inclination of the orbit is 96.220, Landsat can cover the

entire globe between about 840 North and 840 South every 16

days. These characteristics were chosen to satisfy the need

for near-constant resolution, periodic observations of the

same site, and for moderately constant illumination. Land-
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sat 5 crosses the equator on a north-to-south (daylight)

path at approximately 9:45 a.m. local time each morning.

At the equator, adjacent swaths overlap by approxi-

mately 7 percent. [Ref. 4:p. 2-3] This overlap increases

as the satellite moves toward either pole because the orbit

paths converge with increasing latitude.

2. Thematic Mapper

The thematic mapper (TM) is a scanning optical-

mechanical sensor operating in the visible and infrared

wavelengths. [Ref. 4:p. 3-1] It contains a scan mirror

assembly that projects reflected earth radiation onto detec-

tors arrayed in two focal planes. The TM uses the forward

motion of the spacecraft for along-track scan and uses a

moving mirror assembly for the cross-track (perpendicular to

the spacecraft) direction.

The seven TM spectral bands were selected for their

value in discriminating vegetation type and vigor, measuring

plant and soil moisture, differentiating clouds and snow,

and identifying hydrothermal alteration in certain types of

rock [Ref. 5:p. 32]. Table 1 [Ref. 5:p. 30] lists the

characteristics of the TM sensor and Table 2 [Ref. 4:p. 3-

2,6:p. 86] lists some of the applications of the TM spectral

bands.

The TM bands are numbered out of the order of the

wavelength intervals covered. [Ref. 6:p. 85] The wave-
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TABLE 1. THEMATIC MAPPER SENSOR SYSTEM CHARACTERISTICS.
AFTER REF. 5:P. 30

Radiometric
Band Sensitivity
Number Micrometers (NEAP)

1 0.45 - 0.52 0.8
2 0.52 - 0.60 0.5
3 0.63 - 0.69 0.5
4 0.76 - 0.90 0.5
5 1.55 - 1.75 1.0
7 2.08 - 2.35 2.4
6 10.4 - 12.50 0.5K (NEAT)

Note: Radiometric sensitivities are the noise-equiva-
lent radiance differences for the reflective bands
expressed as a percentage and as a temperature differ-
ence for the thermal infrared band.

length interval for band 7 falls between the wavelength

intervals covered by bands 5 and 6. This is because band 7

was added to the TM after the other six bands were defined,

and a decision was made not to renumber the bands.

The instantaneous field of view (IFOV) for bands 1

through 5 and band 7 (the reflective bands) is equivalent to

a 30 meter square when projected to the ground. [Ref. 4:p.

3-1] Band 6, the thermal infrared band, has an IFOV equiva-

lent to a 120 meter square. These data are resampled

during geometric processing to produce 28.5 meter and 120

meter IFOVs for the reflective and thermal infrared bands,

respectively.

Classification accuracy becomes acceptable for most

remote sensing agriculture and forestry applications when

field sizes are greater than 60 IFOVs. [Ref. 5:p. 33] This
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TABLE 2. CHARACTERISTICS OF THE THEMATIC MAPPER BANDS.

AFTER REF. 4:P. 3-2, 6:P. 86

Band Wavelength, un Characteristics

1 0.45 - 0.52 Blue-green. Maximum penetration of water, which is
useful for bathymetric mapping in shallow water. Useful
for distinguishing soil from vegetation and deciduous
from coniferous plants.

2 0.52 - 0.60 Green. Matches green reflectance peak of vegetation,
which is useful for assessing plant vigor.

3 0.63 - 0.69 Red. Matches a chlorophyll absorption band that is
important for discriminating vegetation types.

4 0.76 - 0.90 Reflected IR. Useful for determining biomass content and
for water body mapping.

5 1.55 - 1.75 Reflected IR. Indicates moisture content of soil and
vegetation. Penetrates thin clouds. Good contrast
between vegetation types. Useful for snow/cloud differ-
entiation.

6 10.40- 12.50 Thermal IR. Nighttime images are useful for thermal
mapping and for estimating soil moisture.

7 2.08 2.35 Reflected IR. Coincides with an absorption band caused
by hydroxyl ions in minerals. Ratios of bands 5 and 7
are potentially useful for mapping hydrothermally altered
rocks associated with mineral deposits.

corresponds to a square of about 8 IFOVs on a side. There-

fore, classification accuracy should be acceptable for

fields 240 x 240 m in size if a 30 x 30 m ground IFOV is

used. This should allow most of the field sizes in Canada,

the United States, and the Soviet Union to be adequately

sampled in the spatial domain. It should also provide some

information for fields in developing countries where field

sizes are less than 240 x 240 m.

There are some known limitations of the various TM

bands. At high sun angles, bands 5 and 7 saturate over

bright areas such as sandy beaches [Ref. 4:pp. 2-3 to 2-5].

The time of the Landsat overpass is too early in the day to
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record maximum thermal contrast, which occurs in the early

afternoon. Preliminary studies suggest that band 6 does not

significantly enhance the accuracy of the usual land cover

analysis [Ref. 7:p. 220].

3. Radiometric and Geometric Correction of Image Data

Landsat digital image data transmitted from the

satellite have some degree of distortion because of charac-

teristics of the sensing and recording systems as well as

atmospheric and scene conditions. [Ref. 4:pp. 4-2 to 4-3]

Radiometric distortion is caused by blurring effects of the

sensor, transmission noise, atmospheric interference, vari-

able surface illumination, and changes in surface radiance

due to changes in the viewing angle. Geometric distortion

results from spacecraft effects, such as attitude and alti-

tude changes; earth effects caused by its curvature, rota-

tion, and terrain relief; and temporary aberrations in the

scanning system.

Radiometric corrections account for errors in the

image pixel radiance values caused by changing sensor char-

acteristics. [Ref. 4:p. 4-4] The sensors have internal

calibration lamps, which were calibrated before launch.

They are used to calibrate detector gains and biases. Data

from these lamps can be used to track overall sensor re-

sponse and identify drift away from nominal performance for

each detector. Radiometric corrections are made on a band-
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by-band basis. Different algorithms for estimating gain

and bias are applied to the six reflective bands and to the

thermal band.

Remotely sensed data usually contain both systematic

and nonsystematic geometric errors. [Ref. 5:p. 102-103]

Systematic errors can be corrected using data about the

satellite's position and orientation and knowledge of the

internal sensor distortion. Nonsystematic errors cannot be

corrected with acceptable accuracy without a sufficient

number of ground control points. A ground control point is

a point on the surface of the earth where both image coordi-

nates and map coordinates can be identified.

After the systematic errors have been corrected,

some slight geometric distortion remains because of uncer-

tainties in spacecraft position and orientation. [Ref. 4:p.

4-5] This distortion is normally acceptable, but the dis-

tortion can be removed through the use of ground control

points.

C. ENERGY INTERACTIONS

When electromagnetic energy is incident on any earth

surface feature, three fundamental energy interactions are

possible. [Ref. 8:p. 11] The energy can be reflected,

transmitted, or absorbed. Using the principle of conserva-

tion of energy, the relationship between these energy inter-

actions is
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E, (1) - ER(1) +EA,(1) +ET(A)(

where E, is the incident energy, ER is the reflected energy,

EA is the absorbed energy, and ET is the transmitted energy.

All energy components are a function of the wavelength, X.

It should be noted that the proportions of energy re-

flected, absorbed, and transmitted vary for different earth

surface features, depending on the specific material type

and condition. [Ref. 8:p. 12] Wavelength dependency means

that, for a given surface feature, the proportions of energy

reflected, absorbed, and transmitted will vary at different

wavelengths.

An earth surface feature can be characterized by measur-

ing the fraction of the incident energy that is reflected.

[Ref. 8:p. 13] This quantity is called the spectral re-

flectance, p,, and is a function of wavelength. It is

defined as

PA - ER(X xl00 (2)

where p, is expressed as a percentage.

A graph of the spectral reflectance of an earth surface

material as a function of wavelength is called a spectral

reflectance curve. [Ref. 8:p. 13] The spectral reflectance

curve can give insight into the spectral characteristics of

a surface material and has a strong influence on the choice
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of wavelengths in which remote sensing data are acquired for

a particular application.

Many earth surface features can be identified on the

basis of their spectral characteristics [Ref. 8:p. 15].

Some features of interest cannot be spectrally separated.

The success of multispectral image analysis depends on two

factors: that any surface feature (e.g., a field of wheat)

will have a different radiance at one wavelength than at

another, providing that the difference between the two

wavelengths is sufficiently large; and that no two dissimi-

lar surface features will have the same radiance at both

wavelengths [Ref. 9:p. 363].

Figure 1 shows typical spectral reflectance curves for

three basic types of earth surface feature: healthy green

vegetation, dry bare soil, and clear lake water. [Ref. 8:p.

15] The curves represent average values for these material

types. The reflectance of individual features can vary

considerably above and below the average.

D. PATTERN RECOGNITION

1. General

"The signals from a given sensor can be thought of

as defining a multi-dimensional space where each sensor band

corresponds to a dimension." [Ref. 10:p. 81] The boundaries

of that space are then defined by the minimum and maximum

possible values in each of the bands. The basic pattern
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Figure 1. Typical Spectral Reflectance Curves for Vegeta-
tion, Soil, and Water. From Ref. 8:p. 15

recognition problem is to determine the information class or

category of each distinct region on the ground using the set

of sensor measurements and to estimate the error rate for

the class assignments [Ref. ll:p. 793].

Information classes are those defined by man [Ref.

5:p. 179]. Information classes can be land use or land

cover types which are of interest to the user of the final

classification product. Conversely, spectral classes are

those that are inherent in the remote sensor measurement

space. Spectral classes are only of interest to the extent

that they can be matched to one or more information classes

[Ref. 7:p. 308]. Often spectral classes do not match di-

rectly to information classes because of the effect of mixed

pixels (i.e., pixels containing more than one class) and
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because of spectral diversity in nominally uniform informa-

tion classes (i.e., one information class cc-responds to

several spectral classes) [Ref. 7:pp. 308-309].

The sensor may not gather sufficient information to

allow discrimination to take place between the classes of

interest. [Ref. ll:p. 795] In these cases one may be

forced to define more discernable classes even though they

may be of less interest to the user of the final product.

To help determine the discernable classes, one can employ an

unsupervised classification or clustering process which can

identify what the naturally distinguishable classes are from

the sensor's data.

If the individual classes of the patterns are al-

ready known, then one has a supervised pattern recognition

problem. [Ref. 12:pp. 1-2] In supervised pattern recogni-

tion a portion of the set of known patterns is extracted and

used to derive a pattern classification algorithm. These

patterns are called the training set. The remaining known

patterns are then used to test the classification algorithm.

These patterns are referred to as the test set. Since the

correct class of each of the patterns in the test set are

known, one can evaluate the performance of the algorithm.

Once a desired level of performance is achieved, which is

normally measured in terms of the misclassification rate,

the algorithm can be used on initially unlabeled patterns.
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If the classes, and perhaps even the number of

classes, of the available patterns are unknown, then one has

an unsupervised pattern recognition or clustering problem

[Ref. 12:p. 1-2]. In clustering problems, one attempts to

find classes of patterns with similar properties [Ref. 12:p.

215]. Similarity is often defined as proximity of the

points in multispectral space according to a distance mea-

sure [Ref. 12:p. 216].

There are many reasons why pattern recognition

provides an ideal approach to the problem of dividing an

image into its spectral or information classes. [Ref. 13:p.

136] Since pattern recognition is computer-oriented, it

allows for rapid and repeatable analysis and a statistical

treatment of multivariate data. It is easily tailored to a

wide range of problems, and it produces quantitative re-

sults. Pattern recognition is most applicable when the goal

is to categorize or classify each elementary observation

into one of a limited number of discrete classes.

2. Supervised Classification

In a supervised classification, the identity and

location of some of the land cover types, such as urban,

agriculture, wetland, and forest, are already known through

a combination of field work, analysis of aerial photography,

maps, and personal experience. [Ref. 5:pp. 177-178] With

this knowledge, one attempts to locate specific sites in the
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image that represent homogeneous examples of the known land

cover types. These areas are commonly referred to as train-

ing sites because the spectral characteristics of these

known areas are used to "train" the classification algo-

rithm. The classifier is then used to assign every pixel in

the image to the class which it has the greatest likelihood

of being a member.

"To yield acceptable classification results, train-

ing data must be both representative and complete." [Ref.

8:p. 678) This means that all spectral classes constitut-

ing each information class must be adequately represented in

the training data for a supervised classification to produce

acceptable results [Ref. 8:p. 679].

Since the information to develop complete training

data was not available, this study used unsupervised classi-

fication methods.

3. Unsupervised Classification

In an unsupervised classification, the identities of

the classes of land cover types within a scene are not known

beforehand because adequate ground information is lacking or

surface features within the scene are not well defined [Ref.

5:p. 178). Clustering algorithms are used to search for

"natural" groupings of the pixels in multispectral feature

space [Ref. 5:p. 215]. Once the data are classified, one

attempts to assign these "natural" or spectral classes to
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the information classes of interest. It is usually neces-

sary to combine some of the clusters, since one information

class may be composed of more than one spectral class [Ref.

5:p. 219]. Also, some of the clusters may be less meaning-

ful because they represent mixed classes of earth surface

materials [Ref. 5:p. 215].

Clusters are generally defined as groups of points

that are "similar" according to some measurement criteria.

[Ref. 12:p. 216] Usually, "similarity" is defined as prox-

imity of the points in multispectral space according to a

distance measure.

There are several reasons for interest in using

unsupervised pattern recognition. [Ref. 14:p. 67] The

collection and labeling of a large set of sample patterns

can be very costly and time consuming. In many applica-

tions, the characteristics of the patterns can change slowly

with time. In the early stages of an investigation it may

be valuable to gain some insight into the nature or struc-

ture of the data.

One of the primary advantages of ungun-vised clas-

sification is that the classifier identifies the distinct

spectral classes present in the image data. [Ref. 8:p. 685-

686] Many of these classes might not initially be apparent

to an analyst applying a supervised classifier. Also, the

spectral classes in a scene might be so numerous that it
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would be difficult to train on all of them. In an unsuper-

vised approach they are found automatically.

There are several other advantages of unsupervised

pattern recognition. [Ref. 7:p. 299) The classes defined

by unsupervised classification are often much more uniform

with respect to spectral composition than are those generat-

ed by supervised classification. Unique classes are recog-

nized as distinct units. No extensive prior knowledge of

the region is required, and the opportunity for human error

is minimized.

A serious disadvantage of unsupervised classifica-

tion is that clear matches between spectral and information

classes are not always possible. [Ref. 7:p. 309) Some

information classes may not have direct spectral counter-

parts, and vice versa. Also, comparing the classification

results from different regions or dates may require the same

set of information categories. This is easily handled in

supervised classification by appropriate selection of train-

ing sites. This may be difficult to do with unsupervised

classification, however, since there is no provision in

unsupervised pattern recognition to use information from

outside of the image being classified or to define training

sites.
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E. FEATURE SELECTION

The LANDSAT thematic mapper (TM) acquires images in

seven spectral bands. Because of the amount of data and the

related processing time, subsets or transformations of the

seven bands are often used to reduce the dimensionality of

the data and thus reduce the computation time of the classi-

fication problem.

Generally, the more bands analyzed in a classification

problem, the greater the cost and perhaps the greater the

amount of redundant spectral information being used. [Ref.

5:p. 198] Therefore, a basic problem in multispectral

pattern recognition is to find a technique that will allow

separation of the major land cover classes with a minimum of

error and a minimum number of bands.

A judgement must be made to determine those bands that
are most effective in discriminating each class from all
others. This process is commonly called feature selec-
tion. The goal is to delete from the analysis those
bands that provide only redundant spectral information.
In this way the dimensionality (i.e., the number of
bands to be processed) in the data set may be reduced.
This process minimizes the cost of the digital image
classification (but hopefully, not the accuracy). [Ref.
5:p. 189]

A feature or feature vector can be any mathematical

transformation of the band measurements. [Ref. 13:p. 175]

Transformations that are often used in remote sensing appli-

cations include band subsets, between band ratios, and

linear transformations. Though many linear transformations

are possible, attention was restricted to two of the more
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common ones, the principal component transformation and the

so-called tasseled cap transformation. All of these methods

of reducing data dimensionality were used in this study,

though the band ratio method was only used with the CORINTO

site.

1. Band Subsets

The simplest method of reducing the dimensionality

of the original multispectral data is to select only a

subset of the available bands for use in pattern recogni-

tion. "Generally, the best three-band combinations include

one of the visible bands (TM 1, 2, or 3) and one of the

longer-wavelength infrared bands (TM 5 or 7) together with

TM band 4." [Ref. 5:p. 91]

Studies frequently use one of the visible bands, one

of the mid-IR bands, and the near-IR band, band 4, to reduce

the dimensionality while retaining a "maximum" amount of

information. Band 6 (the thermal IR band) is often not used

because of its different spatial resolution.

Thompson and Henderson [Ref. 15] used the band set

(4 5 7) to investigate soil properties under grassland

vegetation. Crippen [Ref. 16] claims that the band set (1 4

7) is commonly the combination of choice based on qualita-

tive evaluations for both barren and vegetated areas.

Karaska et al. [Ref. 17] found the band set [(1, 2, or 3) 4

5] to be useful in distinguishing forest cover types.
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2. Band Ratios

Sometimes differences in brightness from similar

surface materials are caused by topographic conditions,

shadows, or seasonal changes in sunlight illumination.

[Ref. 5:p. 135] These conditions may hamper the ability of

a classification algorithm to identify the surface materials

in a remotely sensed image. Ratio transformations of the

remotely sensed data can, in certain instances, be used to

reduce the effects of such conditions. These ratios may

also provide unique information not available in any single

band that is useful in discriminating between soil and

vegetation.

Ratios can also be useful in reducing a condition

called the "topographic effect," which is manifested in

Landsat images by the visual appearance of terrain rugged-

ness. [Ref. 18:p. 115] The topographic effect is caused by

differential spectral radiance due to surface slope and

aspect variations.

When using a simple ratio, division by zero is

possible, and ratios less than one are common. [Ref. 8:p.

655] Rounding to the nearest integer will compress much of

the ratio into gray levels 0 or 1. One means of solving

this problem is to define a new gray scale value using the

equation
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GI- K arctan( Gban) (3)
Gd 2

where G' is the new gray scale value and K is a scaling

factor calculated to place the ratio values in the proper

integer range. For positive values of G, and G2, the ratio

G1/G2 will range from 0 to infinity and the arc tangent will

range from 0 to r/2. Therefore, for an eight-bit display, a

value of 162.3 is appropriate for K. The value of G' will

then range from 0 to 255.

The ratio image has several useful properties.

Since the relationship holds for both shadowed and directly

illuminated pixels, the ratio image shows pure reflectance

information without the effects of topography. [Ref. 7:p.

454] This result allows one to examine the reflectance

properties of surfaces without the confusing effects of

mixed brightness of topography and material reflectance.

Ratioed images are often useful for discriminating

subtle spectral variations in a scene that are masked by the

brightness variations in the individual spectral bands.

[Ref. 8:p. 650] Ratioed images portray variations in the

slopes of the spectral reflectance curves between the two

bands involved, regardless of the absolute reflectance

values observed in the bands. However, since ratio images

are intensity blind, dissimilar materials with different

absolute radiances but having similar slopes of their spec-
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tral reflectance curves may appear identical in the ratio

image [Ref. 8:p. 654].

A problem with band ratios is that severe atmospher-

ic effects, if present, can differ from one band to the

other. [Ref 7:pp. 457-458] The value of the band ratio will

no longer portray only the spectral properties of the ground

surface. It will have values greatly altered by the varied

atmospheric contributions to the separate bands.

3. Principal Component Transformation

Extensive interband correlation is often encountered

in the analysis of multispectral image data. [Ref. 8:p.

655-656] The images generated from the various spectral

bands appear similar and convey much of the same informa-

tion. The purpose of the principal component transformation

is to compress the information contained in the original set

of n bands into a fewer number of bands or components. The

components are then used instead of the original data.

The principal component transform (also known as the

Hotelling, eigenvector, or discrete Karhunen-Loeve transform

[Ref. 19:p. 122]) transforms a correlated set of multispec-

tral image data into an uncorrelated data set with certain

ordered variance properties [Ref. 5:p. 151]. The choice of

the basis vectors for the transform is made so that these

vectors point in the direction of the maximum variance of

the data, subject to the constraint that all of the vectors
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be mutually orthogonal and the transformed components be

uncorrelated [Ref. 19:p. 125-126).

The principal component vectors are computed at each

pixel from the original set of n image bands by the trans-

formation

y - 2(4-2') (4)

where x is the (n x 1) vector of gray scale values for each

pixel, mx is the mean vector of the image, T is an (n x n)

orthogonal transformation matrix, the rows of which are the

normalized eigenvectors of the image covariance matrix

arranged with the eigenvalues in descending order, and y is

the vector of principal components, which is calculated

independently for each pixel. (Ref. 20:pp. KARLOV-2 to

KARLOV-3]

Since processing cost is dependent on the dimension-

ality of input to the pattern recognition algorithm, the

usual procedure is to select a subset of the principal

component vector for further processing [Ref. 19:p. 325].

Sinc- the components are ranked so that each component has a

variance less than the previous component, a reduction in

the effective number of bands can occur, since the higher

numbered components will contain less information [Ref.

21:p. 220].

The eigenvalues of the transformation also contain

useful information. (Ref. 5:p. 154] It is possible to
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determine the percent of total variance explained by each of

the principal components, %p, using the equation

Sx 00%-p
12(5)

k-1

where Ip is the pth eigenvalue out of the possible n eigen-

values.

4. Tasseled Cap Transformation

A principal component transformation can fail to

capture the complex structure of Landsat TM data and is

extremely scene dependent [Ref. 22:p. 262].

The TM tasseled cap transformation, on the other hand,
specifically emphasizes the inherent data structures,
and is intended to be an invariant transformation which
can therefore be applied to any TM scene (although
atmosphere and illumination geometry will affect re-
sults, as may substantial deviation from a mid-latitude,
temperate environment). [Ref 22:p. 262]

The analysis of remotely sensed data can be thought

of as a three-step process. [Ref. 22:p. 256] The first

step is to understand the relationship among the sensor

bands for the scene classes of interest. The second step is

to compress the number of spectral bands into a manageable

number of features, and the third step is to extract physi-

cal scene characteristics from the spectral features. The

principal component transformation provides data volume

reduction, but it presents significant obstacles with regard

to physical interpretation of the derived features and
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comparisons between dates or scenes. The tasseled cap

transformation accomplishes all of these functions.

The TM tasseled cap transformation is a linear

transformation that rotates the six TM reflective bands into

TM tasseled cap coordinates. [Ref. 22:pp. 256-257] The

components of th_ transformation matrix are given in Table

3.

TABLE 3. THEMATIC MAPPER TASSELED CAP COEFFICIENTS. FROM
REF. 22:P. 257

Feature Band 1 Band 2 Band 3 Band 4 Band 5 Band 7

Brightness 0.3037 0.2793 0.4743 0.5585 0.5082 0.1863

Greenness -0.2848 -0.2435 -0.5436 0.7243 0.0840 -0.1800

Wetness 0.1509 0.1973 0.3279 0.3406 -0.7112 -0.4572

Fourth -0.8242 0.0849 0.4392 -0.0580 0.2012 -0.2768

Fifth -0.3280 0.0549 0.1075 0.1855 -0.4357 0.8085

Sixth 0.1084 -0.9022 0.4120 0.0573 -0.0251 0.0238

The data in the six TM reflective bands were found

to primarily occupy a three-dimensional space defined by two

perpendicular planes and a transition region between them.

[Ref. 10:p. 84-85] One plane, the plane of vegetation,

contains fully-vegetated samples, while the other plane, the

plane of soils, contains bare soil samples. Samples that

contain both soil and vegetation fall in the transition

region between the two planes. These features typically

capture 95 percent or more of the total variation in TM

images.
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The three basic features of the TM tasseled cap are

called greenness, brightness, and wetness. "Brightness" is

a weighted sum of all six reflective TM bands. [Ref. 22:p.

257-259] It is responsive to changes in total reflectance

and to those physical properties that affect total reflect-

ance. "Greenness" is a contrast between the sum of the

visible bands and the near-infrared band. (The two mid-

infrared bands essentially cancel each other.) "TM green-

ness responds to the combination of high absorption in the

visible bands (due to plant pigments and particularly chlo-

rophyll) and high reflectance in the near-infrared (due to

internal leaf structure and the resultant scattering of

near-infrared radiation) which is characteristic of green

vegetation." [Ref. 22:p. 259] "Wetness" contrasts the sum

of the visible and near-infrared bands with the sum of the

mid-infrared bands. The name wetness was chosen because the

mid-infrared bands have been suggested to be most sensitive

to both soil and plant moisture.

Brightness defines the intersection between two

perpendicular planes, the plane of vegetation and the plane

of soils. [Ref. 22:p. 258-261] The plane of vegetation is

defined by brightness and greenness, the plane of soils is

defined by brightness and wetness, and the transition zone

between the two planes is defined by greenness and wetness.

The final three features contain the residual variation of

the scene.
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The tasseled cap transformation presents TM data in

a more accessible fashion by chdnging the viewing perspec-

tive. [Ref. 22:p. 262] It reduces the data volume by

concentrating the majority of data variability in three

features. By making a direct link between the features and

the physical scene characteristics it enhances both the

interpretation of observed spectral variation and the pre-

diction of the spectral effects of particular changes in

scene characteristics.

An agricultural field can be used to provide an

example of the uses of the tasseled cap transformation.

[Ref. 5:p. 165] During a growing season, the field is

expected to begin near the plane of soils, move through the

transition zone as the crop grows, arrive at the plane of

vegetation near the end of crop development, and then move

back toward the plane of soils during harvest or senescence.

All of the methods of reducing data dimensionality

mentioned above (band subsets, band ratios, the principal

component transformation, and the tasseled cap transforma-

tion) were used in this study. The band-ratio method was

only used with the CORINTO site.
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III. METHODOLOGY

A. SELECTION OF STUDY SITES

1. Site selection

The scene used in this study was acquired by the

Landsat 5 thematic mapper on 24 March 1986 and covered the

area shown in the large box in Figure 2 (path 17, row 51,

scene identification 507531500). It was obtained on CCT-P

computer-compatible tapes, which have been resampled to 28.5

x 28.5 m pixels in the reflective bands and 120 x 120 m

pixels in the thermal-infrared band. [Ref 4:p. 4-5] The

images were radiometrically and geometrically corrected, as

far as available information allowed.

Since a Landsat scene covers an area of 185 x 185

km, a significant reduction in area was necessary to achieve

a study site of a manageable size. First, a one-quarter

scale photomosaic of the entire Landsat scene was made by

photographing screen images of portions of the scene.

Cloud-free areas of the scene were identified as potential

sites for further study. Maps of 1:50,000 scale for por-

tions of the scene were then obtained from the Defense

Mapping Agency. These maps were examined for a variety of

terrain types and for ease in registering the maps to the

Landsat scene.
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of volcanoes, including the volcanoes Telica and Momotombo.

The smaller box in Figure 2 shows the six-map area.

From the six-map area, two 512 x 512 pixel (14.6 x

14.6 km) sites were selected for detailed study. These two

areas together contain a variety of terrain types. The

first area, called CORINTO, contains the port city of Corin-

to, a river/estuary system with extensive mangrove swamps,

some streams, and agricultural land. The second area,

called MALP, lies east of the town of Malpaisillo and con-

tains some smaller streams and a variety of vegetative cover

types such as woodland, scrub, and agricultural land. The

boxed areas in Figure 3 show the approximate site bound-

aries.

2. Geography of the Area

Nicaragua can be divided into three major regions:

the drier, fertile Pacific region and Great Rift Valley; the

wetter cooler Central Highlands; and the hot and humid

Atlantic Coast region. (Ref. 24:p. 66] The six-map area

lies completely in the first region.

Western Nicaragua is marked by a line of young

volcanoes running between the Gulf of Fonseca and Lake

Nicaragua. [Ref. 24:p. 66] Many of these volcanoes are

still active. These volcanic peaks protrude from a large

crustal fracture or rift that forms a long, narrow

37



/ 0 Coo Los
K Puesl -N -Seet Twres

J'17 oe -Lat ESTELf -
PUNTA Ahaa 1 E0h
CONDEGA flOM-18

AaLe 7rinidifd
PUNA CrroE~jsey Sa; Isidro a

Pt~A Vokhii 1-- . I'- - -r , .e
OSIGfJINA egnu CIn 7E(Gse A

Puerto Morazin S'bac'

"Volcin San cristebal Cua -an~
ELieo.1745 4 A0 MmA 6mn Dar

Chinafdq OO,* ala CIr GI. "-Q
C Va'p * ~is A4 ci 1120

El Rals ~* . ~San Francisco

PUJNTA CASTAhONES :: SndlCmcr
__O olci Momo ambo 1280

-Lt La Paz. o ago ce
Na t e . AAGUA Lor

San Rafel d Sun. '+ 0

Figue 3 Aproxmat Stdy it.Boudares.After lRf.

Rio Sanae Jua drainage.e

Surrounding th lae and exedn norhwe ti f r

dpesornnsotheas too the Gulf of Fonseca are fetlelwlnepan

highly enriched with volcanic ash. [Ref. 24:p. 66] These

lowlands are densely populated and well cultivated. The

38



rivers in this area are short and carry a small volume of

water. The soil is volcanic and 85% of the area is fertile.

Mean annual precipitation for these plains and the

flanking uplands ranges from 100 to 150 centimeters. [Ref.

24 :p. 66] Rainfall is usually seasunal. May through

October is the rainy season, and December through April is

the driest period.

3. The CORINTO Site

The CORINTO site includes the city of Corinto and

the area to the northeast. Figure 4 is a map of the site,

with the dark rectangle marking the approximate site bound-

ary. The dark areas around the rivers in the lower left

part of the map represent mangrove swamp; the horizontal

dashed lines at the edge of parts of the mangrove represent

areas that are subject to inundation; and the pattern of

lines in the right half of the map represent small irriga-

tion works. The lower and upper portions of the map come

from two different map sheets. The seven original TM band

images of the site can be found in Appendix A.

The statistics of the CORINTO image are presented in

Table 4. The three visible bands (1, 2, and 3) exhibit a

considerable degree of redundancy; their correlations range

from 0.89 to 0.94. There is also considerable redundancy

between the mid-infrared bands (5 and 7), with a correlation

of 0.91. There are redundancies between the visible bands
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and the mid-infrared bands, The lowest correlations occur

between band 4, the near-infrared band, and the other bands,

so band 4 is the least redundant. Band 6, the thermal-

infrared band, is most correlated with band 7. It is prac-

tically uncorrelated with band 4, and it is moderately

correlated with the other bands. Band 5 has the greatest

variance, followed by bands 4 and 7.
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TABLE 4. STATISTICS FOR THE CORINTO THEMATIC MAPPER IMAGE

Band number 1 2 3 4 5 6 7

Univariate statistics
Mean 93.75 38.35 44.17 65.79 86.28 160.41 40.18
Std. dev. 8.75 6.56 12.53 22.70 33.43 12.03 20.11
Variance 76.65 43.08 157.06 515.24 1117.65 144.75 404.41
Minimum 71 21 15 4 0 134 0
Maximum 255 138 170 159 255 223 255

Variance-covariance matrix
1 76.65
2 52.46 43.08
3 102.86 73.34 157.06
4 64.95 89.56 88.54 515.24
5 232.33 17.52 372.15 357.62 1117.65
6 71.18 45.30 114.99 17.33 308.07 144.75
7 136.59 89.46 220.56 64.47 611.42 216.26 404.41

Correlation matrix
1 1.00
2 0.91 1.00
3 0.94 0.89 1.00
4 0.33 0.60 0.30 1.00
5 0.79 0.81 0.89 0.47 1.00
6 0.67 0.57 0.76 0.06 0.76 1.00
7 0.77 0.68 0.87 0.14 0.91 0.89 1.00

4. The MALP Site

The MALP site is a fairly flat area of mixed terrain

east of the town of Malpaisillo, hence the site name. The

site name was abbreviated due to restrictions on file name

length on the computer used in the study. Figure 5 is a map

of the site, with the dark rectangle marking the approximate

site boundary. Since the scrub areas show only as slightly

shaded areas and the woodland areas do not show up at all (a

problem of copying multi-colored maps in black and white),

Figure 6 was created, which is an overlay of the map in

Figure 5 showing the missing woodland terrain feature. The

white area to the upper right of the map is outside of the
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TABLE 5. STATISTICS FOR THE NALP THEMATIC NAPPER IMAGE

Band number 1 2 3 4 5 6 7

Univariate statistics
Mean 108.06 47.60 68.26 73.11 137.75 170.26 67.92
Std. dev. 12.05 8.31 16.45 13.44 24.93 5.95 14.02
Variance 145.14 69.12 270.65 180.79 621.77 35.40 196.49
Minimum 77 27 24 25 28 139 13
Maximun 187 91 147 144 224 198 244

Variance-covariance matrix
1 145.14
2 97.08 69.12
3 189.17 134.06 270.65
4 99.20 78.44 145.17 180.79
5 259.04 178.40 358.80 218.43 621.77
6 27.01 17.52 41.90 -7.34 54.61 35.40
7 142.34 94.75 194.14 72.75 302.90 53.11 196.49

Correlation matrix
1 1.00
2 0.97 1.00
3 0.95 0.98 1.00
4 0.61 0.70 0.66 1.00
5 0.86 0.86 0.87 0.65 1.00
6 0.38 0.35 0.43 -0.09 0.37 1.00
7 0.84 0.81 0.84 0.38 0.87 0.64 1.00

is also considerable redundancy between the visible and mid-

infrared bands (5 and 7), as the correlations range from

0.81 to 0.87. Band 4 is not highly correlated with any of

the other bands. Band 6 is also not highly correlated with

any of the other bands. The range of pixel values in each

band is less than that of the CORINTO image because there is

less variety of terra i types in this image and no open

water.

B. BAND AND FEATURE SELECTION

The LANDSAT thematic mapper (TM) records images in seven

spectral bands. Because of the amount of data and the

related processing time, subsets or transformations of the
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seven bands are often used to reduce the dimensionality of

the data, and thus reduce the computation time of the clas-

sification problem.

1. Band Subsets

There are 35 possible combinations of the seven TM

bands and 20 possible combinations of six bands (if the

thermal IR band is not used). Clearly, one does not want to

analyze every possible band combination, especially when

some of the bands are highly correlated.

a. The Optimum Index Factor

Use of the optimum index factor (OIF) is one way

to deal with the problem of evaluating the possible band

combinations. [Ref. 5:pp. 90-91] This technique is based

on the amount of total variance and correlation within and

between various band combinations. The OIF for a three-band

subset is

3

OIF - 1- (1)

E Abs (rj)
j-i

where sk is the standard deviation of band k and r, is the

correlation coefficient between any two of the three bands

being evaluated. The three-band combination with the larg-

est OIF generally will have the most information (as mea-

sured by variance) with the least amount of duplication (as
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measured by correlation). Combinations ranking close to-

gether may produce similar results.

The OIF rankings were calculated under two condi-

tions: both including and excluding band 6, the thermal IR

band. The OIF rankings for the CORINTO image are in Table 6

and the rankings for the MALP image are in Table 7.

TABLE 6. OPTIMUM INDEX FACTOR RANKINGS FOR THE CORINTO
IMAGE

Cobination Cmbination
Rank (Using art bands) OIF (Uithout Band 6) 0IF
1 4,5,6 52.501 4,5,7 50.094
2 4,5,7 50.094 3,4,7 42.019
3 4,6,7 50.030 1,4,7 41.454
4 3,4,6 42.054 3,4,5 41.358
5 3,4,7 42.019 1,4,5 40.760
6 1,4,7 41.454 2,4,7 34.765
7 3,4,5 41.358 2,4,5 33.321
8 1,4,6 40.904 1,3,4 28.105
9 1,4,5 40.760 1,5,7 25.129
10 2,4,7 34.765 2,5,7 25.083
11 2,4,6 33.448 3,5,7 24.721
12 2,4,5 33.321 2,3,4 23.304
13 1,3,4 28.105 1,3,5 20.889
14 5,6,7 25.570 1,2,4 20.650
15 1,5,7 25.129 2,3,5 20.290
16 2,5,7 25.083 1,2,5 19.377
17 3,5,7 24.721 2,3,7 16.038
18 1,5,6 24.308 1,3,7 15.993
19 2,5,6 24.272 1,2,7 14.970
20 3,5,6 24.048 1,2,3 10.157
21 2,3,4 23.304
22 1,3,5 20.889
23 1,2,4 20.650
24 2,3,5 20.290
25 1,2,5 19.377
26 2,6,7 18.099
27 2,6,7 17.695
28 1,6,7 17.489
29 2,3,7 16.039
30 1,3,7 15.993
31 1,2,7 14.970
32 1,3,6 14.705
33 2,3,6 14.027
34 1,2,6 12.705
35 1,2,3 10.157
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TABLE 7. OPTIMUM INDEX FACTOR RANKINGS FOR THE MALP IMAGE

Cmbintion Combinetion
Ra* (Using atL benls) OIF (Without Band 6) OIF
1 4,5,6 39.886 4,5,7 27.519
2 3,4,6 30.478 3,4,5 25.124
3 4,6,7 29.978 1,4,5 23.717
4 1,4,6 29.084 2,4,7 23.307
5 3,5,6 28.331 1,4,7 21.458
6 4,5,7 27.519 3,5,7 21.448
7 1,5,6 26.710 2,4,5 21.093
8 3,4,5 25.124 1,3,5 19.853
9 2,5,6 24.764 1,5,7 19.830
10 2,4,6 24.143 1,3,4 18.867
11 5,6,7 23.995 2,4,7 18.824

12 1,4,5 23.717 2,5,7 18.608
13 3,4,7 23.307 2,3,5 18.303
14 1,4,7 21.458 1,2,5 16.826
15 3,5,7 21.448 2,3,4 16.343
16 2,4,5 21.093 1,3,7 16.109
17 1,3,5 19.853 1,2,4 14.806
18 1,5,7 19.830 2,3,7 14.718
19 1,3,6 19.579 1,2,7 13.096
20 3,6,7 19.100 1,2,3 12.677
21 1,3,4 18.867
22 2,4,7 18.824
23 2,5,7 18.608
24 2,3,5 18.303
25 2,3,6 17.427
26 1,6,7 17.244
27 1,2,5 16.826
28 2,3,4 16.343
29 1,3,7 16.109
30 2,6,7 15.676
31 1,2,6 15.474

32 1,2,4 14.806
33 2,3,7 14.718
34 1,2,7 13.096
35 1,2,3 12.677

When all seven bands are considered, the (4 5 6)

band combination ranked first for both images. Band 6 also

appears in many of the top-ranked band combinations. This

would seem to indicate that band 6 contains information that

is not duplicated by the other bands, even though its spa-

tial resolution is poorer. Bands 4 and 5 also appear in

many of the top-ranked band combinations.

When band 6 is not included, the top-ranked band

combination was the (4 5 7) combination. This is somewhat
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unexpected, as bands 5 and 7 tend to be correlated. Almost

all of the other highly-ranked band combinations are of the

form [(1, 2, or 3) 4 (5 or 7)], which is what one would

expect, since the visible bands and the mid-IR bands tend to

be correlated. The band combination (1 2 3), the three

visible bands, consistently ranked last.

b. Physical Arquments

From the spectral reflectance curves in Figure 1,

it is readily seen that the greatest differentiation between

the general land cover types of soil, water, and vegetation

occurs in the mid-infrared, followed closely by the near-

infrared. The thermal-infrared is best at differentiating

soil from water and vegetation. The smallest differentia-

tion occurs in the visible bands.

In the CORINTO image, water and vegetation form

the main areas of interest, so the best choice of a three

band subset might be the three bands that appear individual-

ly to be the best for discriminating those surface materi-

als. Looking at the TM band characteristics in Table 2, it

appears that bands 1, 4, and 5 would be the best choice,

instead of bands 4, 5, and 7. The set (1 4 5) ranked fifth

by OIF, but the OIF calculations included the total scene

statistics, not just the statistics from the distinguishable

surface features of interest. There is not enough ground

information to classify much of the land cover in this
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image, so the OIF may not be the best means of selecting a

three band set.

In the MALP image, there are no large areas of

open water, so the main problem is to distinguish the vege-

tation of interest from soil and other vegetation. From

Table 2, it appears that band sets (1 4 5) or (3 4 5) would

be the best choices. These band sets also ranked second and

third by OIF. In this case, there is less scene variability

(the band variances are less) and the cover types of inter-

est are similar to the cover types in areas where no infor-

mation is available.

2. Image Transformations

Since there is substantial redundant information in

both images, the transformations discussed in Chapter II may

be able to reduce dimensionality while retaining more infor-

mation than a simple three band subset.

a. The Principal Component Transformation

The principal component transformation was per-

formed on both images using the appropriate routine (KARLOV)

from the Land Analysis System [Ref. 20:pp. KARLOV-1 to

KARLOV-5]. The routine performs the transformation as

outlined in Chapter II. The eigenvalues for the transforma-

tion of the CORINTO image are shown in Table 8, and the

eigenvalues for the MALP image are in Table 9. For both

images, the first three principal component bands explain
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more than 97 percent of the total scene variance, as calcu-

lated by equation 5. The first three principal component

band images for each site are in Appendix B.

TABLE 8. EIGENVALUES OF THE CORINTO IMAGE COVARIANCE
MATRIX

Co ponent
number 1 2 3 4 5 6 7

Eigenvatue 1874.62 473.44 54.98 39.07 10.77 4.39 1.57
Percent Vari- 76.24 19.25 2.24 1.59 0.4 0.18 0.06
ance
Cumutative 76.24 95.49 97.73 99.32 99.76 99.94 100.0
Percent Vari-
ance

TABLE 9. EIGENVALUES OF THE MALP IMAGE COVARIANCE MATRIX

Component
number 1 2 3 4 5 6 7

Eigenvatue 1277.50 132.74 66.09 23.31 12.42 6.23 1.06
Percent Vezi- 84.08 8.74 4.35 1.53 0.82 0.41 0.07
ance
Cumulative 84.08 92.82 97.17 98.70 99.52 99.93 100.0
Percent Vari-
ance

b. The Tasseled Cap Transformation

The other linear transformation discussed in

Chapter II was the tasseled cap transformation. The coeffi-

cients in Table 3 were used to transform both the CORINTO

and MALP images into their greenness, brightness, and wet-

ness components. A short program was written to perform the

transformation and to scale the output images to the proper

range (0 to 255) for the available display. The tasseled
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cap component images are in Appendix B. The short program

used for the transformation is listed in Appendix C.

c. Band Ratios

The other image transformation discussed in

Chapter II was band ratios. Band ratios have been found to

be useful both to reduce the topographic effect and to

enhance certain information in an image. For example, the

ratio of bands 3 and 4 provides vegetation information, and

the ratio of bands 2 and 5 is useful for identifying water

bodies and provides subtle wetland information [ref 5:pp.

137-138].

To test the usefulness of band ratios, a few

ratios of the CORINTO image were made and grouped together

as multiband images. Since water, wetland, and vegetation

are the categories of interest in this image, the three

ratios (band l)/(band 5), (band 2)/(band 5), and (band

3)/(band 4) were calculated. All three ratios were grouped

together as one three-band image, and the three possible

two-band combinations were grouped together as two-band

images. The three ratio images are in Appendix B, and the

program used to create these ratio images is listed in

Appendix C.

3. Band Selection

After considering the possible band combinations,

the most promising ones, based on the above discussion, were
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selected. Since time and processor usage were not always a

critical constraint on this study, for completeness the full

seven band set was included as one of the band choices.

This set will have all of the information available, so it

should give a good indication of what features are and are

not detectable. Since reducing the dimensionality does

significantly affect processing time and would make the

results more transportable to other processing environments,

a number of three-band subsets and transformations were also

selected.

The band combinations selected for further study

were:

* The seven TM bands. This set has all of the sensor

information available.

" Bands 4, 5, and 6. This set ranked first by OIF.

" Bands 4, 5, and 7. This set ranked was highly ranked by
OIF and ranked first when band 6 was not included. The
spectral reflectance curves of soil, water, and vegeta-
tion have the greatest separation in this range. These
bands respond to soil variability as manifested by
vegetation [Ref. 15:p. 321].

" Rands 1, 4, and 7. Fairly high ranking by OIF (without
band 6). A common combination of choice [Ref. 16:p.
141]. These bands are not highly correlated, and this
set includes one band from each of the three major
reflective spectral regions (visible, near-infrared, and
mid-infrared).

" Bands 1, 4, and 5. Fairly high OIF ranking (without
band 6). Useful for distinguishing forest cover types
[Ref. 17]. Physical arguments also support the selec-
tion of this band combination.

" Bands 3, 4, and 5 (MALP site only). Fairly high OIF
ranking (without band 6). Useful for distinguishing
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forest cover types [Ref. 17]. Physical arguments also
support the selection of this band combination.

• Bands 3, 4, and 6 (MALP site only). Ranked second by

OIF.

* The first three principal component bands.

a The three tasseled cap transformation bands (greenness,
brightness and wetness).

* Ratio images (CORINTO site only). Various combinations
of the ratios (band l)/(band 5), (band 2)/(band 5), and
(band 3)/(band 4).

C. THE LAND ANALYSIS SYSTEM

The Land Analysis System (LAS) is an image analysis

system designed for use with satellite imagery. [Ref. 20:p.

1] It provides the capability to manipulate and analyze

digital image data and includes a wide range of functions

and statistical tools for image analysis. It was the prima-

ry software used in this study. In addition to routines for

extracting the study sites from a Landsat scene, image

statistics calculation, and file management functions, LAS

includes a variety of routines for both supervised and

unsupervised classification. All three of the routines for

unsupervised classification (HINDU, KMEANS, and ISOCLASS)

were used, as well as one of the supervised classification

routines (MINDTST). The classification routines used are

summarized below. A more detailed description of each

algorithm is in Appendix D.
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1. The HINDU Classification Routine

HINDU classifies a multiband image based upon its

multidimensional histogram. [Ref. 20:p. HINDU-i) Regions

in the histogram with high density are regarded as pattern

clusters. The user specifies the input image, the minimum

and maximum acceptable number of clusters, and the number of

gray levels per histogram bin.

2. The KMEANS Classif' cation Routine

KMEANS performs an unsupervised classification using

the K-means algorithm. The basic K-means algorithm operates

as follows [Ref. 12:p. 218]:

" Step 1: Begin with an arbitrary set of cluster centers

for the desired number of clusters.

" Step 2: Compute the sample mean of each cluster.

" Step 3: Reassign each sample to the cluster with the
nearest mean.

" Step 4: If the classification of all samples has not
changed, stop. If not, go to step 2.

3. The ISOCLASS Classification Routine

ISOCLASS performs the unsupervised classification of

am image using an isodata-type clustering algorithm [Ref.

20:p. ISOCLASS-1]. The basic isodata clustering algorithm

operates as follows [Ref. 12:p. 219]:

* Step 1: Cluster the data into C classes. Eliminate any
classes with fewer than T members.
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" Step 2: On every other iteration, if C < 2N then split
any clusters whose samples form sufficiently disjoint
groups. If any clusters have been split, go to step 1.

* Step 3: Merge any clusters whose means are sufficiently
close.

" Step 4: Go to step 1.

In the algorithm description, C is the number of classes, T

is the minimum number of pixels allowed in a cluster, and N

is the approximate desired number of clusters.

4. The MINDIST Classification Routine

MINDIST performs a supervised classification of

multiband images based on minimum distance from class means.

[Ref. 20:p. MINDIST-1] It can also be used to attempt to

improve the results of the unsupervised clustering algo-

rithms, either by discarding pixels that are too far from

cluster centroids or by reclassifying clusters based on

cluster means and a distance rule.

D. FEATURES OF INTEREST

1. Identifiable Information Classes

Given that the only ground reference available was

1:50,000 scale maps, a key question is: what are the mean-

ingful terrain classes that can potentially be identified?

The symbols and color coding used on a map are identified in

the map legend. Using the map legend, the following types

of terrain can be identified in the two study sites: water,

stream, mangrove, land subject to inundation, woodland,
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scrub, city, and road. Grassland and cultivated land are

other probable terrain types, but these two terrain types

were not marked on the maps.

Landsat TM images are appropriate sources for Level

I and many Level II categories in the U.S. Geological Survey

(USGS) Land Use and Land Cover Classification System [Ref.

8:pp. 138-140] As can be seen in Table 10, almost all of

the areas identifiable from the map match categories in the

USGS classification system. So the prospects appear good

that the terrain types identified above may indeed be spec-

trally distinguishable.

Some of the terrain features (e.g., streams and

roads) will generally be linear features much less than a

pixel (28.5 m) wide. Bernstein et al. [Ref. 21:p. 195],

when examining a TM image of Dulles airport, found that

linear features as small as about 7.6 m (about a quarter of

a pixel) wide could easily be visually discerned because of

a favorable contrast ratio between the linear feature and

its background. Since streams tend to encourage vegetation

to grow along their banks by providing a ready source of

water, and since water and vegetation have greatly different

reflectivities in the infrared wavelengths, streams (at

least the larger ones, which also have a greater potential

for being obstacles) should also be detectable as linear

features of subpixel width.
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TABLE 10. U.S. GEOLOGICAL SURVEY LAND USE/LAND COVER
CLASSIFICATION SYSTEM FOR USE WITH REMOTE SENSOR DATA.
FROM REF S:P. 139

Level I Level I!
1 Urban or buiLt-up Land 11 Residential

12 Commercial and services
13 Industrial
14 Transportation, communications, and

services
15 Industrial and commercial complexes
16 Mixed urban or buiLt-p Land
17 Other urban or built-p land

2 Agricultural land 21 Cropland and pasture
22 Orchards, groves, vineyards, nurser-

ies, and ornamental horticultural ar-
eas

23 Confined feeding operations
24 Other agricultural land

3 Rangeland 31 Herbaceous rangeland
32 Shrub and brush rangeland
33 Mixed rangeland

4 Forest Land 41 Deciduous forest land
42 Evergreen forest land
43 Mixed forest land

5 Water 51 Streams and canals
52 Lakes
53 Reservoirs
54 Bays and estuaries

6 Wetland 61 Forested wetLand
62 Nonforested wetland

7 Barren land 71 Dry salt flats
72 Beaches
73 Sandy areas other than beaches
74 Bare exposed rocks
75 Strip mines, quarries, and gravel pits
76 Transitional areas
77 Mixed barren land

8 Tundra 81 Shrub and brush tundra
82 Herbaceous tundra
83 Bare ground
84 Mixed tundra

9 Perennial snow and ice 91 Perennial snowfields
92 Glaciers

2. Information Classes of Interest

At TM pixel size, cities are not a distinct spectral

class, but are made up of a number of sub-classes (e.g.,

residential, commercial/industrial, parks, mixed pixels),

some of which may not be spectrally distinguishable from

other terrain classes of interest. Since the locations of

cities are generally known and normal weather variations
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have much less impact on cities, identification of cities

was not be pursued in this study.

Roads, since they do not generally fall under the

categories of obstacles or cover and concealment, were also

not addressed.

A pixel is considered to be a water pixel when it

contains only water, i.e., when the pixel does not also

contain some other terrain type. Stream pixels, on the

other hand, will generally contain some other terrain type

or types in addition to water, i.e., they will be mixed

pixels. It is hoped that streams, at least the ones large

enough to be potential obstacles, will be detectable by the

influence of their water content on the spectral response of

the pixel. It is also possible that streams may be detect-

able by their effect on the vegetation lining the stream

banks, creating a contrast between the vegetation lining the

stream and the other local vegetation.

Land subject to inundation may be inundated, have a

specific type of vegetative cover (such as reeds or swamp

grass), be barren soil, or have mixed cover types that do

not permit them to be identified as a separate class. The

question of separability can only be answered by examining

the classified images. The question of exact cover type can

not be answered here. The value of these areas as either

obstacles or concealment will depend on the exact cover type

or whether the area is inundated.
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Woodland and scrub are very broad categories, but a

finer distinction is not possible with the available ground

information. The size, health, density, and type of woods

or scrub can affect the spectral response and thus the

classification of a given pixel, but any further subdivision

of these classes would be speculation. More detailed infor-

mation about subclasses would, of course, be important for

making judgements about the quality of cover and concealment

they may provide. If these land cover types are separable

from the rest of the image, the value of using Landsat TM

imagery for finding the correct state of these military

terrain classes would be demonstrated.

a. The CORINTO Site

The CORINTO site was used to attempt to identify

water obstacles. Figure 7 is an overlay of the map of the

CORINTO site showing the information classes of interest.

There are significant areas of open water and mangrove.

There are numerous streams in the site, which may be detect-

able as subpixel-width linear features.

Along the streams in the eastern part of the site

are three potential water obstacles. These potential water

obstacles were identified on the map as being wider than

the normal stream markings (see Figure 4). Two of these

areas are above dams ("Presa" is Spanish for dam). Other
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Mangrove

Land subject to inundation Potential water obtacle

FZ Foreshore flat

Figure 7. overlay of the CORINTO Map ShoVing Water

Features, Mangrove, and Land Subject to Inundation

60



portions of the streams could also be water obstacles, but

no other candidates are obvious from the map reference.

As mentioned above, the land subject to inunda-

tion may or may not be identifiable as a separate class.

There were no special markings on the rest of the site, so

those areas were not considered in the rest of the study.

b. The MALP Site

The MALP site was used to attempt to identify

vegetative cover and concealment. Figure 6 is a map overlay

of the MALP site showing the information classes of inter-

est. The only information classes of interest in this site

are woodland and scrub. These are very broad categories, so

it was expected that more than one or two spectral classes

would map to each of these information classes. However, if

portions of these classes can be separated from the rest of

the site by the classification algorithms, that would indi-

cate that further study with better ground information would

be worthwhile.

Human activity could complicate the evaluation of

vegetative cover and concealment in this site. This site is

in the more populous part of Nicaragua. Human activity, eve

over short periods of time, can have a significant effect on

the woodland and scrub areas through such activities as

logging, land clearing, and firewood collection. This could

61



render the map reference used here out-of-date and lead to

poor results.

3. Assigning Spectral Classes to Information Classes

Clusters were manually assigned to information

classes. This task was made much easier by means of a few

simple procedures and one fortunate circumstance. When the

map overlays of Figures 6 and 7 were copied at a 74 percent

scale factor (available on local copying machines), they

were almost the same size as the images produced by one of

the available printers. The difference was about one per-

cent, adequate for the task given the limited ground infor-

mation. By making transparencies of the reduced overlays,

the appropriate transparency could be laid on top of the

printed classification image. This made the cluster identi-

fication process much easier.

The maps of Figures 4 and 5 were the ground refer-

ence used to identify the information classes of interest in

this study. The map overlays of Figures 6 and 7 were the

references used to assign spectral classes in the classified

images to the information classes of interest.

E. CLASSIFICATION ACCURACY ASSESSMENT

If a remote sensing-derived land cover map is to be

useful, there must be some method for assessing classifica-

tion accuracy. [Ref. 5:p. 225] This normally requires the

collection of information about some parts of the terrain
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which can then be compared with the remote sensing-derived

classification map. This means that to assess classifica-

tion accuracy it is necessary to compare two classification

maps, the remote sensing-derived map and a reference map

that is assumed to be accurate. The reference map may be

derived from on site investigation or, as is often done,

from the interpretation of remotely sensed data obtained at

a larger scale or higher resolution. For example, research-

ers often compare a Landsat-supervised classification map

with a reference map produced by interpreting large-scale

(e.g., 1:20,000) aerial photographs.

"The overall accuracy of land-use maps for earth re-

source management should generally be 85% and the accuracy

must be approximately equal for most categories." [Ref.

5:pp. 225-226] Since the only ground reference available

for this study was the 1:50,000 scale maps, the accuracy for

the identifiable classes may not reach that goal, and not

all of the area in each site will be classifiable. However,

since the goal of this study is to demonstrate the feasibil-

ity of using Landsat satellite imagery for terrain analysis

and not to manage earth resources, a lower level of accuracy

is acceptable.
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IV. ANALYSIS OF RESULTS

A. PRESENTATION OF CLASSIFICATION RESULTS

The results of the unsupervised classifications are best

presented in image form. The different clusters in the

classified image are assigned different colors or gray scale

values to depict the spatial relationship of the various

classes. Generally, spectral classes that do not contain

information of interest are all assigned the same gray scale

value. Here, a value of 255 (white; was used for the class-

es not shown in a classified image. These classes were

usually the "unknown" parts of the site. The spectral

classes corresponding to the information classes of interest

are the only colored or gray areas in the classified image.

All of the spectral classes corresponding to one infor-

mation class can be assigned the same gray scale value.

This would be done to create a classified image containing

only the information classes of interest. This was not done

here. Each spectral class was assigned a different gray

scale value so that the spectral structure of the image data

could be clearly seen.

Some comments accompany each classified image to assist

the reader in interpreting the results of the classification
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and to call attention to points of interest in the classifi-

cation result.

B. STATISTICAL SEPARABILITY OF CLUSTERS

It is relatively easy to run a large number of classifi-

cations. All that is required are computer time and pa-

tience. It is much more difficult and time consuming to

analyze all of the results. One method of selecting the

results for further analysis is to use a statistical measure

of class separability.

Since class separability is a function not only of the

distance between class means but also of the class probabil-

ity distributions [Ref. 28:p. 335], a measure that includes

both factors is needed. A measure called the divergence

meets these criteria. A separability measure derived from

the divergence, called the transformed divergence may also

provide an indirect method of estimating the likelihood of

correct classification [Ref. 29:p. 689].

The divergence is calculated from the mean and covari-

ance of each spectral class and is a measure of the statis-

tical distance between class pairs [Ref. 29:p. 688]. The

divergence is derived from the logarithmic-likelihood ratio

[Ref. 13:pp. 167-168]. The pairwise divergence between

classes i and j is defined as [Ref. 29:p. 688]:

Dij - fln P (i) [p(i) -p(j) ]d ()
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where p(zli) is the probability density function of x for

class i.

When the classes are assumed to have normal probability

functions, the expression for divergence simplifies to [Ref.

13:p. 168]:

Dij - 0.5tr((Ct-Cj) (Cil-Ci1 )) + 0.5tr((Cj'+CjJ1 ) (mt-mJ) (m1 -mj)')

(2)

where C, is the covariance matrix for class i, mi is the

mean vector for class i, and tr(A) denotes the trace, or sum

of the diagonal elements, of the matrix A.

A problem with divergence is that, as two classes are

more widely separated in feature space, the probability of

correct classification has an upper bound of 100 percent,

but the divergence will continue to increase. [Ref. 28:p.

340] One solution is to use the transformed divergence, a

saturating function of their divergence.

The transformed divergence is defined as [Ref. 20:p.

DIVERGE-2]:

-- / (3)

DT j - 100(-e 8 )

where DTij is the transformed divergence between classes i

and j. The transformed divergence is extended to cover all

of the class pairs by calculating the average transformed

divergence DTAVE, which is simply the numerical average of
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the transformed divergence DT.i over all class pairs [Ref

20:pp. DIVERGE-2 to DIVERGE-3].

One method of using the transformed divergence is to

select the feature set having the greatest average trans-

formed divergence [Ref. 13:p. 169). This is similar to

maximizing the probability of correct classification.

Another method is to select the feature set having the

largest minimum value of transformed divergence [Ref. 13:p.

173]. This would be the feature set with the best perfor-

mance in separating the most difficult pair of classes to

separate.

According to Jensen [Ref. 5:p. 201], a transformed

divergence value of 100 suggests excellent class separation;

a transformed divergence above 95 suggests good separation;

and a value below 85 suggests poor class separation. Haack

[Ref. 30:p. 269], on the other hand, states that a trans-

formed divergence value of 75 or greater generally indicates

an acceptable separability of classes. An exact threshold

value for "acceptable" separability is not as important here

as a feel for what the value of the transformed divergence

means, i.e., a larger value is better, and a value below the

range of 75 to 85 means that the two clusters are not well

separated by this measure.

67



C. SUMMARY OF CLASSIFICATION RESULTS

A summary of selected classifications for the CORINTO

site is presented in Table 11. A summary for the MALP site

is in Table 12. Both summaries include the classified image

name, the number of clusters, and the average and minimum

transformed divergence. The number of iterations required

Table 1. SUMMARY OF SELECTED CLASSIFICATIONS FOR THE
CORINTO SITE

Ctassified Number of Execution Number of
Image name clusters DTAVE DTMIN time iterations

CORINTO.CLASS1 29 97.94 33.93 27:54 60

CORINTO.CLASS1.MINDIST 29 97.99 40.09

CORINTO.CLASS2 48 42:13 80

CORINTO.CLASS2.MINDIST 48

CORINTO.KMEANS1 23 97.43 41.95 12:11 20

CORPCA.CLASS1 10 86.43 2.34 4:09 20

CORPCA.KMEANS3 20 85.35 5.00 4:11 14

COR457.KMEANS1 23 94.86 34.40 26

COR145.KMEANS2 23 86.84 3.13 8:34 25

COR145.CLASS1 13 84.93 5.50 9:57 40

COR456.KMEANS1 23 86.59 6.92 25

CORTC.KMEANS1 23 91.50 5.00 26

RATIO.KMEANS1 23 98.00 69.25 6-07 18

RATIO.KMEANS8 8 98.57 82.22 9

RATIO12.KMEANS8 8 95.86 65.73 0:55 9

RAT[O13.KMEANS8 8 76.20 5.28

RAT1O23.KMEAAND8 8 70.20 4.47 9

COR147.KMEANS1 23 84.58 1.56 21

CORINTO.HINDU3 23 98.48 58.90 0:C5

CORINTO.HINDU3.MINDIST 23 97.56 56.09 0:55
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for each iterative classification algorithm is also listed.

For some of the classifications, the time required for the

classification (in hours and minutes on a MicroVax II) is

included. This gives a relative measure of the speed of

each algorithm.

Table 12. SUMMARY OF SELECTED CLASSIFICATIONS FOR THE
MALP SITE

CLassified Number of Execution Number of

Image name cLusters DTAvE DTMIN time iterations

MALP.CLASS4 17 98.01 61.18 60

MALP.CLASS4.MINDIST 17 98.28 72.00

MALP.KMEANS2 23 97.96 17.35 17:39 29

MALP.KMEANS8 8 99.34 94.57 19

MALPPCA.CLASS2 11 89.23 31.49 40

MALPPCA.KMEANS1 23 91.26 5.90 28

MALPPCA.KMEANS8 8 90.41 43.28 25

MALP457.KMEANS1 23 90.08 21.0 33

MALP457.KMEANS8 8 88.15 39.15 39

MALP145.CLASS1 11 86.46 14.05 4:52 40

MALP145.KMEANS1 23 90.00 11.84 9:51 33

MALP.KMEANS8 8 89.88 33.30 19

MALP456.KMEANS1 23 80.23 1.83 38

MALP456.KMEANS8 8 80.23 14.78 23

MALP345.KMEANS8 8 90.22 40.69 19

MALPTC.KMENAS1 23 74.94 3.16 24

MALP346.KMEANS8 8 85.73 5.35 16

MALP147.KMEANS1 23 86.41 4.29 25

MALP.HINDU2.MINDIST 23 96.82 30.49

MALP.HINDU3.MINDIST 13 98.44 81.94

Most of the classified images have many more clusters

than there were information classes of interest. This was

done because the spectral structure of the data was unknown.

With more spectral classes than information classes, the

additional spectral classes are either subclasses of the

information classes of interest and can be combined, or they
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can be ignored as classes not of interest. Classifying the

images into too few spectral classes can result in spectral

classes that are mixtures of information classes. Mixed

spectral classes are of little or no use to this study.

1. Classified Image Naming Conventions

The naming convention used in Tables 11 and 12

provide information about the feature set and classification

algorithm for each classified image. The classified image

name is composed of two or three parts: the first part is

the feature set identifier, the second is the classification

algorithm identifier, and the third part, if there is one,

indicates that the MINDIST algorithm was used as a post-

processing step.

The feature set identifier part of the classified

image name is constructed as follows:

" CORINTO or MALP indicates that all seven of the original
thematic mapper bands were used.

• CORxyz or MALPxyz indicates that the three bands x, y,
and z of the original seven thematic mapper bands were
used.

" CORPCA or MALPPCA indicates that the first three bands
of the principal component transformation were used.

" CORTC or MALPTC indicates that the three tasseled cap
transformation components (greenness, brightness, and
wetness) were used.

* RATIO indicates that the three ratio bands, (band 1)/
(band 5), (band 2)/(band 5), and (band 3)/(band 4), were
used.
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* RATIOxy indicates that two of the three ratio bands were
used, where a 1 indicates that the ratio (band l)/(band
5) was included, a 2 indicates that the ratio (band
2)/(band 5) was included, and a 3 indicates that the
ratio (band 3)/(band 4) was included.

The classification algorithm identifier was con-

structed as follows:

" CLASS indicates that the ISOCLASS algorithm was used

" KMEANS indicates that the KMEANS algorithm was used

" HINDU indicates that the HINDU algorithm was used

The number following the algorithm identifier is a reference

number used to keep track of different results from using

the same algorithm on the same feature set.

The presence of MINDIST in the classified image name

indicated that the MINDIST algorithm was used on the image

as a post-processing step to reclassify the image using the

Euclidean distance rule. KMEANS already uses that distance

rule, so MINDIST was not used on any of the KMEANS classifi-

cations.

2. Input Parameters for IBOCLASS

The ISOCLASS routine requires a number of input

parameters. The parameters used are shown in Table 13. The

meaning of these parameters is listed below [Ref. 20:pp.

ISOCLASS-1 to ISOCLASS-2]:

Any two clusters whose means are closer than DLMIN are
combined.
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• NMIN is the minimum number of members desired in any
cluster. Clusters that have less than NMIN members are
deleted.

• Any cluster whose standard deviation is greater than
STDMAX and has more than 2(NMIN + 1) members is split.

• CHNTHS is the threshold for chaining clusters.

0 MAXCLS is the maximum number of clusters.

Recommended ranges on the values of DLMIN and CHNTHS are

given in the LAS User's Manual [Ref. 20:pp. ISOCLASS-1 to

ISOCLASS-5]. The value of STDMAX was selected by a trial-

and-error process based on the number of clusters produced

by different values of this parameter. As long as the value

of NMIN was small, it did not have much effect on the clas-

sification results.

The maximum allowable value of 64 for MAXCLS was

used. This was done because the spectral structure of the

data was unknown. With more spectral classes than informa-

tion classes, the additional spectral classes are either

subclasses of the information classes of interest and can be

combined, or they can be ignored as classes not of inter-

est. Classifying the images into too few spectral classes

can result in spectral classes that are mixtures of informa-

tion classes. Mixed spectral classes are of little or no

use to this study.

A more detailed description of the ISOCLASS algo-

rithm is given in Appendix D.
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Table 13. INPUT PARAMETERS FOR THE ISOCLASS UNSUPERVISED
CLASSIFICATION ALGORITHM

Image name DLMIN STDMAX NMIN CHNTHS
MALP.CLASS4 3.9 10.0 300 3.9
MALPPCA.CLASS2 3.2 4.5 150 3.2
MALP145.CLASS1 3.9 10.5 300 3.9
CORINTO.CLASS1 5.0 10.5 300 5.0
CORINTO.CLASS2 5.0 10.5 20 5.0
CORPCA.CLASS1 3.2 4.5 30 3.2
COR145.CLASS1 3.9 11.0 200 3.9

3. General Observations

From Tables 11 and 12, it can be seen that the

classified imaged with the larger minimum values cf trans-

formed divergence, DT MIN, tend to have the larger average

values of transformed divergence, DT AVE Since larger values

of DT MN indicate a better ability to separate hard-to-sepa-
rate classes, the value of DT was used to select classi-

fied images for analysis. The band sets with the largest

values of both DTMIN and DTAVE are the original seven-band set,

the (4 5 7) band set, the ratio images that include both the

(band l)/(band 5) and the (band 2)/(band 5) ratios, and many

of the MALP site classifications with eight classes.

As can b- seen in Tables 11 and 12, processing time

increased both as the number of bands in the input image

increased and as the number of output clusters increased.

The processing time required by the various clustering

algorithms for classifying the same input band set with

similar numbers of clusters varied widely. Since all of the
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seven-band-set results for the CORINTO site had fairly large

values of DT IN with all of the clustering algorithm combina-

tions used in the study, this permits a comparison of the

clustering algorithms. An evaluation of the ability of this

band set to separate the classes of interest for this site

is also possible.

D. COMPARISON OF CLUSTERING ALGORITHMS

1. The HINDU Algorithm

The HINDU algorithm runs very quickly, taking about

five minutes to classify a seven-band, 512 x 512 pixel

image. The one classification listed in Table 11 using this

algorithm, called CORINTO.HINDU3, had a relatively high

value of transformed divergence (58.90). However, the

spectral classes in this classified image do not match very

well to the information classes of interest, based on manual

comparison with Figure 7.

Figure 8 shows the classes of interest extracted

from the CORINTO.HINDU3 classified image. Comparing Figure

8 with the map overlay of Figure 7, it can be seen that this

classification did detect one class of water and two of

"mangrove." ("Vegetation and water" might be a more accu-

rate description of the mangrove class. Other, clearly non-

mangrove, areas were classified as belonging to this class,

and it is not clear that mangrove can be spectrally separat-

ed from the other vegetation present.) It also detected the
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Figure 8. The CORINTO.KINDU3 Classified Image

three potential water obstacles on the streams in the east-

ern part of the CORINTO site. However, the water and man-

grove do not have clear boundaries like those shown in the

map overlay, but are mixed together in the northern part of

the mangrove. There also seems to be a small amount of

misclassification in the rest of the image.
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The minimum value of the pairwise transformed diver-

gence between the three classes was 96.3. Yool et al. found

no clear relationship between divergence values and classi-

fication accuracy for individual classes, possibly because

the assumption of Gaussian class distributions is not always

accurate [Ref. 28 :p. 6893. However, the transformed diver-

gence will still be used here as a measure of the statisti-

cal separability of classes. It is the best measure of

statistical separability available in the Land Analysis

System.

2. HINDU Followed by MINDIST

As shown in Figure 9, using the MINDIST algorithm on

the CORINTO.HINDU3 classification result still yields one

class of water and two of mangrove, but the separation of

classes appears to be much more accurate. Water was better

separated from the mangrove, more of the streams in the area

were detected, and there were fewer pixels in these classes

in the "unknown" parts of the site. The minimum value of

the pairwise transformed divergence between the three class-

es was 91.7.

It takes MINDIST about 50 minutes to reclassify a

seven-band image using the cluster centers calculated using

a different classification algorithm. MINDIST uses the

input cluster centers and the selected distance measure to
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Figure 9. The CORINTO.HINDU3oMINDIST Classified Image

reassign all of the pixels in the image to the various

classes.

3. The KMEANS Algorithm

The KMEANS algorithm runs at a moderate speed,

normally four to eight hours for a three-band image and six

to 12 hours for a seven-band image. Run times are somewhat
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higher for a greater number of clusters and for a smaller

value of the execution cutoff threshold, PCTCNG. Control

over the number of clusters is very good, and the accuracy

appears to be good also. However, the clusters may not all

be significantly different if the analyst has specified

incorrectly the number of clusters desired versus the number

of clusters actually occurring in the imaqe.

The classification results of CORINTO.KMEANS1 are

similar to the CORINTO.HINDU3.MINDIST results, but two water

classes were detected instead of one, and three mangrove

classes were detected instead of two (see Figure 10). These

additional spectral classes appear to be transition classes:

one between water and mangrove, and the other between man-

grove and the rest of the image. The information contained

in these additional spectral classes might distinguish

between terrain of significantly different obstacle value.

Without better ground information, no definite conclusior

can be made.

The minimum value of the pairwise transformed diver-

gence between the five classes was 41.9 between the two

mangrove classes. Between the remaining class pairs the

minimum value was 94.0. This indicates that, according to

the transformed divergence measure, the two mangrove classes

are not well separated spectrally, but that the remaining

class pairs are spectrally well separated.
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Figure 10. The CORINTO.KMEANS1 Classified Image

It took 12 hours and 11 minutes to reach the a

termination threshold of one percent of the pixels changing

clusters in an iteration for this classification.

4. The ISOCLABB Algorithm

ISOCLASS generally takes longer to produce results

than the other two unsupervised classification algorithms.
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ISOCLASS gives the user the most control over cluster sta-

tistics, but there is no direct way to estimate the number

of clusters which a given set of input parameters is likely

to produce. Each new run of the algorithm is, in part, a

trial to see if the resulting number of clusters is in the

desired range. Experience helps in the selection of input

values, but still this only provides a starting point for a

trial and error process. Of course, this process also gives

the researcher some insight into the spectral structure of

the natural clusters present in the image. There is also no

completely unambiguous sign of convergence, though there are

normally some fairly strong indications.

As seen in Figure 11, the CORINTO.CLASS1 classifica-

tion result is almost the same as the CORINTO.KMEANS1 clas-

sification result, except for the assignment of gray scale

values to classes. The same five classes were detected,

with the same meanings and most of the same member pixels.

There are fewer stream and "unknown" pixels in

CORINTO.CLASS1 than in CORINTO.KMEANS1, especially in the

northern part of the site.

The minimum value of the pairwise transformed diver-

gence between the five classes was 44.4 between the two

mangrove classes. Between the remaining class pairs the

minimum value was 95.7.

The time of 27 hours and 52 minutes does not include

the time required by several previous attempts. These

80



i4

Figure 11. The CORINTO.CLAS1 Classified Image

previous attempts were necessary to find appropriate values

for the input parameters and to gain experience in better

estimating "good" input parameters for the ISOCIASS algo-

rithm.

The CORINTO.CL.SS2 classification was a continuation

of CORINTO.CLASSI with a smaller value for the minimum
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number of pixels allowed in a cluster. The change was from

300 to 20. Although the number of clusters increased from

29 to 48, most of the additional clusters were small.

Twelve of the additional 19 clusters had fewer than 300

pixels. Of interest to this study is that the "water bound-

ary" class was split into two classes. One class appears to

be the same as described above, a transition from water to

mangrove, The other seems to be a transition from water to

classes other than mangrove. The water obstacles were still

classified as mangrove and water boundary. The other water

transition class mainly consisted of coastal pixels that

were not near any mangrove.

5. ISOCLASS Followed by MINDIST

Using the MINDIST algorithm on an image that has

been classified using ISOCLASS slightly increases the aver-

age and minimum values of the transformed divergence, but

the classification results for the classes of interest do

not appear to be much different. As shown in Figure 12, the

CORINTO.CLASS1.MINDIST image has slightly fewer stream and

unknown pixels than the CORINTO.CLASS1 image, but there do

not appear to be any other differences.

The minimum value of the pairwise transformed diver-

gence for the five classes was 44.0 between the two mangrove

classes. Between the remaining class pairs the minimum
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E. CORINTO SITE CLASSIFICATION RESULTS

1. Comments on Class Names

Most of the spectral clusters or classes fall into

one of two general categories: water or mangrove. These two

categories have one or more sub-categories in the various

classification images. Some of these sub-categories appear

to be the result of spectral differences in a single infor-

mation class, while others seem to be transitions between

information classes, since they predominantly occur at the

boundaries between the information classes. The transition

class between water and mangrove has been called "water

boundary," and the transition class between mangrove and the

rest of the image has been called "land boundary."

There was, in most images, no separate "stream"

class. Pixels for the potential water obstacles were clas-

sified as being water, mangrove, or one of the transition

classes. Other portions of streams detected were usually

classified as mangrove or the land boundary class. "Stream

pixel" has been used as a descriptive term identifying

pixels along streams and normally does not identify a sepa-

rate spectral class.

2. Use of the KMEANS Algorithm

The KMEANS algorithm was used for most of the clas-

sifications made during this study. From the comparison of

clustering algorithms above, KMEANS was more accurate than
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HINDU, even when post-processed using MINDIST. It was also

faster than ISOCLASS with about the same accuracy.

3. The COR457.KNEANS1 Classification Results

Shown in Figure 13, the COR457.KMEANSI classifica-

tion had a fairly high minimum value of transformed diver-

gence, 34.40. This classification resulted in five spectral

classes for the information classes of interest. In addi-

tion to one water and two mangrove classes, there was one

class that appeared to be a mixed class containing both

mangrove and the entire water boundary class. The other

class was a mixed class of land boundary and streams, with

streams making up about half of this class. This classifi-

cation detected by far the most streams, and was the only

classification with streams making up such a large percent-

age of the total number of pixels in any one class.

The three potential water obstacles were assigned to

the water boundary/mangrove and the northernmost (black)

mangrove classes.

The minimum value of the pairwise transformed diver-

gence for the five classes was 69.8 between the two mangrove

classes. Between the remaining class pairs the minimum

value was 95.7.

4. The RATIO.KMEANS1 Classification Results

The RATIO.KMEANS1 classification has a very high

minimum value for the transformed divergence, 69.25. This
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The three potential water obstacles had pixels that

were assigned to two of the water boundary classes and to

all three of the mangrove classes.

A.

44 I',e-

Figure 14. The RATIO.KMEANI4S Classified Image
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For some reason, the streams detected in most of the

other classifications were not detected here, but the stream

in the northeast (upper right) part of the site was detected

here and not shown in most of the other classifications.

The minimum value of the pairwise transformed diver-

gence for the five classes was 71.1 between the two larger

mangrove classes. Between the remaining class pairs, the

minimum value was 91.1.

5. The RATIO.KMEANS8 Classification Results

To test if the information classes identified in the

above classifications were spectrally homogeneous enough to

classify the broad information classes with fewer spectral

classes, the RATIO band set was classified with the KMEANS

algorithm into eight spectral classes. The resulting clas-

sified image, shown in Figure 15, had three spectral classes

of interest: one water class, one mangrove class, and one

water boundary class.

The potential water obstacles were classified into

the water boundary and mangrove classes.

The main difference between this classification

result and the previous one, other than the different number

of classes, is that here almost no stream pixels were. de-

tected.
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Figure 15. The RATIO.KMEANSS Classified Image

The minimum value of the pairwise transformed diver-

gence between the three classes was 99.99, indicating excel-

lent spectral separability.

6. The RATIO12.KMEANS8 Classification Results

To test the possible utility of a two-band-ratio set

for detecting water obstacles, the three two-band combina-
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tions of the available ratios were classified using the

KMEANS algorithm. Shown in Figure 16, the two-band set

containing the (band l)/(band 5) and (band 2)/(band 5)

ratios was the only one with a large minimum value of trans-

formed divergence. Again, there are three spectral classes

of interest: one water class, one mangrove class, and one

water boundary class.

The potential water obstacles were classified into

the water boundary and mangrove classes. There were also

more pixels of unknown information classes assigned to one

of the three spectral classes.

The minimum value of the pairwise transformed diver-

gence between the three classes was 99.99, indicating excel-

lent spectral separability.

7. The CCRPCA.KMEANS3 Classification Results

Since the desired number of classes is an input to

KMEANS, it is possible that the number of clusters created

is greater than the number of spectrally distinct classes.

ThiE could result in a low minimum value of the transformed

divergence. With this possibility in mind, the principal

component transformation classification results and the

tasseled cap transformation classification results were

examined.

The CORPCA.KMEANS3 classification, shown in Figure

17, had a low minimum value of transformed divergence, 5.00.
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Figure 16. The RATIOl2.KMEANS8 Classified Image

This classification resulted in four spectral classes of

interest: one water class, two mangrove classes, and one

land boundary class.

The classified image is very similar to the

CORINTO.KMEANS1 and the CORINTO.CLASS1 results.
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Figure 17. The CORPCA.KMEANB3 Classified Image

The three potential water obstacles were assigned

primarily to the two mangrove classes, though a few pixels

were assigned to the water class.

The minimum value of the pairwise transformed diver-

gence for the four classes was 60.2 between the two mangrove

classes. For the remaining class pairs, the minimum value
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I
was 67.3 between the lighter (more southernmost) mangrove

class and the land boundary class.

S. The CORTC.KMEANSI Classification Results

The CORTC.KMEANS1 classification had a low minimum

value of transformed divergence, 5.00. This classification,

shown in Figure 18, resulted in six spectral classes for

the information classes of interest: one water class, one

water boundary class, three mangrove classes, and one land

boundary class.

The three pctential water obstacles were assigned

primarily to the water boundary and two of the mangrove

classes.

The minimum value of the pairwise transformed diver-

gence between the six classes was 52.9. Several of the

other class pairs had values of transformed divergence below

75.0. In spite of the low values of transformed divergence,

these results are similar to the other classifications

examined here.

9. Summary of CORINTO Site Classification Results

All of the algorithm and band combinations examined

were able to detect the three potential water obstacles

identified on the map of the CORINTO site. Most of the band

and algorithm combinations used detected more than one

mangrove class and a transition or boundary class between

water dnd mangrove and between mangrove and the rest of the
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Figure 18. The CORTC. aEsif Classified Image

site. Because of the limited ground inforation available,

it is not known if these additional spectral classes corre-

spond to terrain of significantly different obstacle value.

All of the band subsets and band transformations

detected the potential water obstacles, so a reduction in

the dimensionality of the classification problem is possi-
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ble. Portions of the water obstacles were classified in the

water boundary class and, in a few classifications, in the

water class. It is likely that there was enough open water

in these areas to affect the sensor readings.

Most of the classifications also detected portions

of the streams in the study site, with the (4 5 7) band

combination performing best at stream detection. Since most

of the streams (other than the water obstacles) were classi-

fied in the mangrove or the land boundary classes, it is

likely that this classification was due to the effect of the

stream's water on the sensor response.

The minimum value of the transformed divergence does

not appear to be a valid criteria for selecting band sets

here. Since most of the spectral classes in the classified

images were not used, separation of the hardest-to-separate

spectral class may be of no consequence to the analysis. Two

classified images were examined that had low minimum values

of transformed divergence (CORPCA.KMEANS3 and CORTC.

KMEANS1). However, the lowest value of transformed diver-

gence between spectral classes of interest in these images

was greater than in many of the classified images with much

greater minimum values of transformed divergence. This is

shown in Table 14, which shows both the minimum value of

transformed divergence for the entire image and the minimum

value of transformed divergence for the information classes

of interest.
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Table 14. MINIMUM VALUES OF TRANSFORMED DIVERGENCE

DTMIN

Ctassified DTmIN Between cLasses
Image name Overall of interest

CORINTO.CLASS1 33.93 44.4
CORINTO.CLASS1.MINDIST 40.D9 44.0

CORINTO.KNEANS1 41.95 41.95

CORPCA.KMEANS3 5.00 60.2
COR457.KMEANSI 34.40 69.8

CORTC.AMEANS1 5.00 52.9
RATIO.IMEANS1 69.25 71.1
RATIO.KMEANS8 82.22 99.99
RATIO12.KMEANS8 65.73 99.99
CORINTO.HINDU3 58.90 96.3
CORINTO.HINDU3.MINIST 56.09 91.7

F. MALP BITE CLASSIFICATION RESULTS

The results for the MALP site were mixed. Since the

results for all of the classifications were similar, only a

few will be examined here.

1. The MALP.KMEANS8 Classification Results

The MALP.KMEANS8 classification had the greatest

values of both the minimum and average transformed diver-

gence of all of the classifications in Table 12, 94.57 and

99.34, respectively.

Figure 19 shows all eight classes of the

MALP.KMEANS8 classified image. Comparing Figure 19 to

Figure 6, the map overlay of the MALP site, one finds that

the woodland area in the center of the site and extending to

the northeast (upper right) is well defined, as are portions

of the woodland in the southern part of the site. The rest

of the vegetation classes of interest are confused with the
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rest of the site. This confusion of classes holds for all

of the other classification results for this site. Woodland

and scrub were generally not distinguishable as distinct

classes, either.

Figure 19. The MALP.KMEANS8 Classified Image
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Figure 20 shows the two classes that make up most of

the central woodland. The darker class also makes up a

portion of the woodland in the southern part of the site, in

addition to some of the scrub in that part of the site. The
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lighter class contains some areas to the southwest of the

central woodland as well as much of the central woodland.

To some extent, this occurred in all of the classification

results for this site. From the ground information avail-

able, there is no clear explanation for this.

2. The MALP.KJ4EANS2 Classification Results

Figure 21 shows the six classes that predominantly

fell within the boundaries of woodland or scrub for the

MALP.KMEANS2 classification. These two information classes

were not spectrally distinguishable in this classification,

so they were treated as one category.

In Figure 21, it can be seen that the central wood-

land area is again well-distinguished, as are the woodland

and scrub in the southern part of the site. More of the

scrub in the northwest part of the site was included in

these spectral classes than in MALP.KMEANS8. There is still

a significant amount of misclassification in these spectral

classes, based on a manual comparison with the 1:50,000

scale maps.

Figure 22 shows the five mixed spectral classes,

i.e., that contained large portions of both the woodland/

scrub and the unknown parts of the site. The same mixed

classes are also consistently mixed in the other classifica-

tions.
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Figure 23. Woodland/Scrub in the MALP.CLASS4 Classified
Image

value of the cover and concealment afforded by the different

spectral classes. The classes shown in Figure 23, for

example, could provide good cover and concealment, while the

classes in Figure 24 could be useless as cover or conceal-

ment. The differences could also be due to some other

reason. The difficulty in separating woodland from scrub
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Figure 24. Mixed Classes in the MALP.CLASS4 Classified Image

and scrub from the rest of the site indicate that better

ground information is necessary before any definite conclu-

sions can be drawn about the ability of Landsat TM imagery

to identify suitable vegetated areas of cover and conceal-

ment.
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V. CONCLUSIONS

A. EVALUATION OF THE ALGORITMS USED

Of the classification algorithms examined in this study,

only the HINDU algorithm produced a highly inaccurate re-

sult. After post-processing with the MINDIST algorithm, the

HINDU classification results were comparable to the results

of the other classification algorithms.

Both the KMEANS and the ISOCLASS algorithms found more

spectral classes in the mangrove area than did the HINDU

algorithm. They also found what appear to be transition

regions between information classes. The "land boundary"

transition class was useful for identifying streams. If

these additional spectral classes provide more or better

information about terrain conditions, then KMEANS and ISO-

CLASS would be superior to HINDU. If not, the speed of the

HINDU-MINDIST combination would clearly be superior because

of the much faster processing time.

Post-processing the results of the ISOCLASS algorithm

with the MINDIST algorithm was shown not to be worthwhile.

B. DETECTION OF POTENTIAL WATER OBSTACLES

All of the algorithm and band combinations examined were

able to detect the three potential water obstacles identi-

fied on the map of the CORINTO site. Most of the band and
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algorithm combinations used detected more than one mangrove

class and a transition or boundary class between water and

mangrove and between mangrove and the rest of the site.

Because of the limited ground information available, it is

not clear if these additional spectral classes correspond to

terrain of significantly different obstacle value.

All of the band subsets and band transformations detect-

ed the potential water obstacles, so a reduction in the

dimensionality of the classification problem is possible.

Portions of the water obstacles were classified in the water

boundary class and, in a few classifications, in the water

class. It is likely that there was enough open water in

these areas to affect the sensor readings.

Most of the classifications also detected portions of

the streams in the study site, with the (4 5 7) band combi-

nation performing best at stream detection. Since most of

the streams (other than the water obstacles) were classified

in the mangrove or the land boundary classes, it is likely

that this classification was due the effect of the stream's

water on the sensor response.

The minimum value of the transformed divergence does not

appear to be a valid criteria for selecting band sets here.

Since most of the spectral classes in the classified images

were not used, separation of the hardest-to-separate spec-

tral class may be of no consequence to the analysis. Two

classified images with low minimum values of transformed
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divergence (CORPCA.KMEANS3 and CORTC.KMEANS1) were examined.

As shown in Table 14, the minimum value of the transformed

divergence between "spectral classes of interest" in these

two images was greater than it was for many of the other

classified images examined in this study.

C. DETECTION OF VEGETATION PROVIDING COVER AND CONCEALMENT

Some portions of the MALP site were spectrally separable

as belonging to the vegetation classes identified from the

map of the site (see Figures 5 and 6). However, much of the

two information classes of woodland and scrub belonged to

mixed spectral classes. These mixed spectral classes also

included large areas outside of the woodland and scrub

boundaries, according to the map reference.

These mixed spectral classes could be the result of

different species or mixes of species of vegetation in the

different parts of the site. They could also be the result

of different inaccuracy in the reference map, effects of the

dry season on different species or parts of the site, or

they could be the result of other reasons.

Given the above possibilities, it is apparent that the

information classes, woodland and scrub, are very broad.

The likelihood of a homogeneous woodland or scrub class,

even over the small area of the site (14.6 x 14.6 km) is not

large. This is especially true when human activity is

present and when it is related to the cover and concealment
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value of the vegetation in the area. Better ground informa-

tion is necessary before any firm conclusions can be made

about evaluating vegetative cover and concealment with

Landsat TM imagery.

Most of the classified images with eight clusters had

significantly greater minimum values of transformed diver-

gence than the corresponding classified image with more

(normally 23) clusters. However, the images with more

clusters appear to better separate the classes of interest.

This is probably because the classes of interest are not

spectrally well-separated, so it is not appropriate to use

the transformed divergence measure under these circumstances

(i.e., to rank unsupervised classification results).

D. SUMMARY

1. Primary Research Question

The primary research question examined in this study

was: can unsupervised pattern recognition algorithms be

effectively used on Landsat thematic mapper imagery to

perform parts of the terrain analysis step of the Intelli-

gence Preparation of the Battlefield process? Specifically,

the study focused on water obstacles and cover and conceal-

ment provided by vegetation.

It appears that some aspects of terrain analysis can

be performed using the methods examined in this study.

Though further research is needed to validate and extend the
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results, these methods may make possible rapid, current,

large area terrain analysis, at least for certain terrain

features.

2. CORINTO Site Summary of Results

All of the unsupervised pattern recognition algo-

rithms and all of the band combinations examined were able

to detect all three of the potential water obstacles identi-

fied from the map of the CORINTO site, so it appears that

water obstacles can indeed be detected using these methods.

The HINDU algorithm followed by the MINDIST algorithm pro-

vided the fastest acceptable classification of the CORINTO

site, where "acceptable" is a qualitative judgment based on

comparing the classified image with the map overlay of

Figure 7. This assumes that there is no significant obsta-

cle information added by the additional spectral classes in

the other classified images, an assumption which could be

wrong. Better ground reference information is necessary to

determine if these additional spectral classes add informa-

tion about obstacles, and thus to determine which is the

"best" classification algorithm.

The simplest method of data reduction examined, band

subsets, provided acceptable classification results based on

a manual comparison with the map overlay of Figure 7.

Therefore, it is probably not necessary to use any of the

other more complicated and time-consuming methods of reduc-
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tion of dimensionality examined in this study to detect

water obstacles. Band subsets, using the (4 5 7) band

combination, also provided the best classification of the

streams in the site.

3. MALP Site Summary of Results

All of the band combinations examined had similar,

mixed results. Much of the two information classes of

interest, woodland and scrub, belonged to mixed spectral

classes. Since the cover and concealment value of the

vegetation in these two information classes was not known,

better ground information is necessary before any firm

conclusions can be made about evaluating vegetative cover

and concealment with Landsat TM imagery.

4. Evaluation of Statistical Separability

The minimum value of the transformed divergence does

not appear to be a valid criteria for selecting band sets

here. Since most of the spectral classes in the classified

images were not used, separation of the hardest-to-separate

spectral class in an image is of no consequence to the

analysis.

Most of the spectral classes of interest did have

high values of transformed divergence, so the transformed

divergence may be of some value in deciding which spectral

classes add unique information to the classification re-

sults.
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E. DIRECTIONS FOR FURTHER RESEARCH

The greatest limitation on this study was the limited

availability of ground reference information. Further study

with better ground information is necessary to validate or

refute these results, as well as to discover the reason for

the mixed results of the attempt to separate vegetative

cover and concealment. Also, with better ground informa-

tion, a better evaluation of the clustering algorithms and

band combinations would be possible.

Ideally, one would like to discover and catalog charac-

teristic spectral response patterns for features of interest

(e.g., water obstacles) for use with a supervised classifi-

cation algorithm such as MINDIST. That would eliminate the

requirement that the 'water obstacle' class be large enough

to be considered to be a separate class by an unsupervised

classification algorithm. Supervised clustering algorithms

tend to be faster than unsupervised ones, and the post-

processing requirement for assigning spectral classes to

information classes is reduced or eliminated. More study is

necessary to determine if such a spectral response pattern

can be identified and applied with an acceptable classifica-

tion rate.

Militarily 'interesting' areas are often those areas

that are different from other areas. For example, military

excavations or camouflaged areas will not normally cover a

significant portion of a scene, but these areas would be of
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great military interest. Since these areas may be spectral-

ly different from the remainder of a scene, they may be

'outlier' pixels to the normal scene clusters. Using a

reverse of the MINDIST algorithm's option to eliminate

pixels far from cluster means, one can search for these

outlier pixels. This has the potential to reduce the time

required for an image analyst to identify areas of enemy

activity, especially if it is coupled with some method of

change detection. It could also be useful in identifying

features such as water obstacles in scenes where there is no

large, similar class present in the image.

111



APPENDIX A -ORIGINAL BAND IMAGES

Figure 25. CORINTO Site, Thematic Mapper Band 1 Image
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Figure 26. CORINTO Site, Thematic Mapper Band 2 Image
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Figure 27. CORINTO Site, Thematic Mapper Band 3 Image
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Figure 28. CORINTO Site, Thematic Mapper Band 4 Image
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Figure 29. CORINTO Site, Thematic Mapper Band 5 Image
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Figure 30. CORINTO Bite, Thematic Mapper Band 6 Image
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Figure 31. CORINTO Site, Thematic Mapper Band 7 Image
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Figure 32. HALP Site, Thematic Mapper Band 1 Image
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Figure 33. MALP Site, Thematic Mapper Band 2 Image
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Figure 34. MALP Site, Thematic Mapper Band 3 Image
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Figure 35. MALP Site, Tiematic Mapper Band 4 Image
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Figure 36. HALP Site, Thematic Mapper Band 5 Image
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Figure 37. MALP Site, Thematic Mapper Band 6 Image
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Figure 38. MALP Site, Thematic Mapper Band 7 Image
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APPENDIX B -TRANSFORMED BAND IMAGES

Figure 39. CORINTO Site, Principal Component 1 Image
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Figure 41. CORINTo site, Principal Component 3 Image
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Figure 43. MALP Site, Principal Component 2 Image
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Figure 44. MALP Site, Principal Component 3 Image
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Figure 45. CORINTO Site, Tasseled Cap Greenness Image
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Figure 46. CORINTO Site, Tasseled Cap Brightness Image
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Firgure 47. CORINTO Bite, Tasseled Cap Wetness Image
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Figure 48. MALP Site, Tasseled Cap Greenness Image
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Figure 49. M.ALP Site, Tasseled Cap Brightness Image
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Figure 50. MALP Site, Tasseled Cap Wetness Image
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Figure 51. CORINTO Site, (Band 1)/(Band 5) Ratio Image
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Figure 52. CORINTO Site, (Band 2)/(Band 5) Ratio Image
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Figure 53. CORINTO Site, (Band 3)/(Band 4) Ratio Image
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APPENDIX C - SHORT PROGRAMS

A. BAND RATIO PROGRAM

c ratio.for
c
c
c purpose:
c this program performs the band ratioing operation.
c It operates by calculating the pixel-by-pixel
c division of one 512 x 512 image file by another.
c The program consists of a main program and one
c subroutine. The subroutine readimg reads an image
c file.
c
c
******************* input **********************
c
c this program assumes that both image files are 512 x 512
c pixels in size, stored as BYTE (or INTEGER*l) data.
c
c the user interactively specifies both input file names
c and the output file name.
c
************************* output **********************
c
c the output image is stored in the user specified file as
c BYTE (or INTEGER*l) data.
c
c
c********************** main program *******************

c define and dimension variables

byte ioimg(512,512)
integer i,j,k,l,intimg
real*4 numimg(512,512), denimg(512,512), scale
character*20 imgnamel, imgname2, imgname3

parameter (scale = 162.3)

c get filenames from user
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print *, I enter the numerator filename
read '(a)', imgnamel
print *, I enter the denominator filename
read '(a)', imgname2
print *, I enter the output image filename
read '(a)', imgname3

c read numerator image file

call readimg(imgnamel,numimg)

c read denominator image file

call readimg(imgname2,denimg)

c divide numerator image by denominator image
c and scale to 0-255 (real)

do 10 i=1,512
do 11 j=1,512
numimg(i,j)=scale*atan2(numimg(i,j),denimg(i,j))

11 continue
10 continue

c scale the image to 0-255 (byte)

do 85 i=1,512
do 86 j=1,512

intimg = int(numimg(i,j))
if (intimg.ge.128.0) then

ioimg(i,j) = intimg - 256
else

ioimg(i,j) = intimg
endif

86 continue
85 continue

c write output image file

open(unit=l,name=imgname3,type='new' ,access='direct',
*recordsize=128,maxrec=512)
do 100 i=1,512

write(l'i) (ioimg(i,j), j=1,512)
100 continue

close(unit=l)

end

c subroutine: readimg
c
c purpose:
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c subroutine to read byte input image and convert to

c a real image

subroutine readimg(name,image)

byte ioimg(512,512)
integer i,j
real*4 image(512,512)
character*20 name

open(unit=l,name=name,type='old',access='direct',
*recordsize=128,maxrec=512)

do 10 i=1,512
read(l'i) (ioimg(i,j), j=1,512)

10 continue
close(unit=l)

do 20 i=1,512
do 30 j=1,512

image(i,j)=float(jzext(ioimg(i,j)))
30 continue
20 continue

return
end

B. TASSELED CAP TRANSFORMATION PROGRAM

c tasseledcap.for
c
c
c purpose:
c this program performs the tasseled cap
c transformation on six input bands and produces the
c first three tasseled cap component images:
c greenness, brightness, and wetness.
c It operates by calculating the transformations one
c at a time.
c The pro-ram consists of a main program and two
c subroutine. The subroutine readimg reads an image
c file and the subroutine scale scales the output to
c the required 0-255 range and writes the output image
c to disk.
c
c
************************** input *
c
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c this program assumes that all image files are 512 x 512
c pixels in size, stored as BYTE (or INTEGER*l) data.
c
c the user interactively specifies all six of the input
c file names and all three of the output file names.
c
c************************* output *
c
C the output images are stored in the user specified files
c as BYTE (or INTEGER*l) data.
c
c
**************** main program *******************

c define and dimension variables

integer i,j,k
integer mindsp,maxdsp
real*4 image(512,512), tc(512,512)
character*20 band(6)
character*20 green,bright,wet

real*4 g(6)/-.2848,-.2435,-.5436,.7243,.0840,-.1800/
real*4 b(6)/.3037,.2793,.4743,.5585,.5082,.1863/
real*4 w(6)/.1509,.1973,.3279,.3406,-.7112,-.4572/

parameter (mindsp=0,maxdsp=255)

c get filenames from user

print *, I enter band 1 filename
read '(a)', band(l)
print *, I enter band 2 filename
read '(a)', band(2)
print *, I enter band 3 filename
read '(a)', band(3)
print *, I enter band 4 filename
read '(a)', band(4)
print *, I enter band 5 filename
read '(a)', band(5)
print *, I enter band 7 filename
read '(a)', band(6)
print *, I enter greenness (output) filename
read '(a)', green
print *, I enter brightness (output)filename
read '(a)', bright
print *, enter wetness (output)filename
read '(a)', wet

c calculate and output the greenness transformation
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call readimg(band(l),tc)

do 12 i=1,512
do 13 j=1,512
tc(ij) = g(1)*tc(ij)

13 continue
12 continue

do 15 k=2,6

call readimg(band(k),image)

do 10 i=1,512
do 11 j=1,512
tc(i,j)=tc(i,j) + g(k)*image(i,j)

11 continue
10 continue
15 continue

c scale the image to 0-255 and write to disk

call scale(green,tc,mindsp,maxdsp)

c calculate and output the brightness transformation

call readimg(band(1),tc)

do 22 i=1,512
do 23 j=1,512

tc(i,j) = b(l)*tc(i,j)
23 continue
22 continue

do 25 k=2,6

call readimg(band(k),image)

do 20 i=1,512
do 21 j=1,512
tc(i,j)=tc(i,j) + b(k)*image(i,j)

21 continue
20 continue
25 continue

c scale the image to 0-255 and write to disk

call scale(bright,tc,mindsp,maxdsp)

c calculate and output the wetness transformation

call readimg(band(l),tc)
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do 32 i=1,512
do 33 j=1,512

tc(i,j) = w(1)*tc(i,j)
33 continue
32 continue

do 35 k=2,6

call readimg(band(k),image)

do 30 i=1,512
do 31 j=1,512
tc(i,j)=tc(i,j) + w(k)*image(i,j)

31 continue
30 continue
35 continue

c scale the image to 0-255 and write to disk

call scale(wet,tc,mindsp,maxdsp)
end

c
c
c subroutine: scale
c
c purpose:
c subroutine to scale image to 0-255 and write it to disk

subroutine scale(imgname,numimg,mindsp,maxdsp)

integer i,j
integer mindsp,maxdsp
byte ioimg(512,512)
real*4 numimg(512,512),minmag,maxmag
character*20 imgname

minmag = 1.0e1O
maxmag = 0.0
do 80 i=1,512

do 81 j=1,512
if (numimg(i,j).lt.minmag) then
minmag = numimg(i,j)

elseif (numimg(i,j).ge.maxmag) then
maxmag = numimg(i,j)

endif
81 continue
80 continue

do 85 i=1,512
do 86 j=1,512
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nuinimg (, j ) =(numimg (i,ji) -minmag) *(maxdsp/ (maxmag-mirnag))
if (nuiimg(i,j).gt.127) then
ioimg(i,j) = numimg(i,j) - 256
else
ioimg(i,j) = numimg(i,j)
endif

86 continue
85 continue

c write output image file

open(unit=l,name=imgname,type='new' ,access= 'direct',
*recordsize=128 ,maxrec=512)
do 100 i=1,512

write(1i) (ioimg(i,j), j=1,512)
100 continue

close (unit=l)

return
end

c subroutine: readimg
c
c purpose:
c subroutine to read byte input image and convert to
c a real image

subroutine readimg(name, image)

byte ioimg(512,512)
integer i,j
real*4 image(512,512)
character*20 name

open(unit=l,name=name,type='old' ,access='direct',
*recordsize=128 ,maxrec=512)

do 10 i=1,512
read(l'i) (ioimg(i,j), j=1,512)

10 continue
close (unit=l)

do 20 i=1,512
do 30 j=1,512

image(i,j)=float(jzext(ioimg(i,j)))
30 continue
20 continue

return
end
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APPENDIX D - THE LAND ANALYSIS SYSTEM

A. OVERVIEW

The Land Analysis System (LAS) is an image analysis

system designed for use with satellite imagery. [Ref. 20:p.

1] It provides the capability to manipulate and analyze

digital image data and includes a wide range of functions

and statistical tools for image analysis. In addition to

routines for extracting the study sites from a Landsat

scene, image statistics calculation, and file management

functions, LAS includes a variety of routines for both

supervised and unsupervised classification. All three of

the unsupervised classification routines (HINDU, KMEANS, and

ISOCLASS) and one of the supervised classification routines

(MINDIST) are described below.

B. THE HINDU CLASSIFICATION ROUTINE

HINDU classifies a multiband image based upon its multi-

dimensional histogram. [Ref. 20:pp. HINDU-1 to HINDU-3]

Regions in the histogram with high density are regarded as

pattern clusters.

1. User Input

The user specifies the input image, the minimum and

maximum acceptable number of clusters, and the number of

gray levels per histogram bin [Ref. 20:p. HINDU-2].
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2. Algoritha Description

Each bin or cell of the multidimensional histogram

is examined for neighbors that have a higher density. [Ref.

20:p. HINDU-2] The low density cells are then assigned in

proportion to their high-density neighbors. This reassign-

ment is carried out from the lowest to the highest density

cell, recalculating the density at each stage. The histo-

gram is then searched for entries of greater than average

density. These entries are considered as possible clusters.

If there are too few clusters, the program aborts. If there

are too many clusters, those with a lower significance are

deleted to obtain the a number of clusters in the specified

range. Each pixel is assigned to the nearest cluster.

HINDU is suitable primarily for Landsat images.

C. KNEANS

KMEANS performs an unsupervised classification using the

K-means algorithm. [Ref. 20:p. KMEANS-1] Input images can

have up to 24 bands and the algorithm can produce classified

images with up to 64 clusters.

1. User Input

The user specifies the input and output image names

and the following parameters [Ref. 20:p. KMEANS-1]:

" NCLUST - number of clusters desired.

" MAXIT - maximum number of iterations.
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* PCTCNG - threshold value of the percentage of pixels
changing cluster assignment in an iteration. If the
percentage of pixels changing cluster assignments be-
tween iterations falls below thing value, clustering has
converged and execution is terminated.

2. Algorithm Description

KMEANS operates as follows [Ref. 20:pp. KMEANS-2 to

KMEANS-3]:

" Step 1: Compute the image means and standard devia-
tions.

" Step 2: Determine the location of initial cluster
centers.

* Step 3: Assign data to clusters using the minimum
Euclidean distance rule.

" Step 4: Update cluster centers using the assignments of
step 3.

• Step 5: Stop if MAXIT is exceeded or if the percentage
of pixels changing clusters was less than PCTCNG.
Otherwise, go to step 3.

" Step 6: Compute and print statistics.

The location of initial cluster centers is given by

Center(cluster k, band i) - m.+o i -(k-1) x 2ai (1)

NCLUST- 1

where mi is the mean value of band i, a, is the standard

deviation of band i, and k ranges from 1 to NCLUST.
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D. ISOCLASS

ICOSLASS performs unsupervised classification of a

multispectral image using an isodata-type clustering algo-

rithm. [Ref. 20:p. ISOCLASS-1) Input images can have up to

24 bands and the algorithm can produce classified images

with up to 64 clusters. ISOCLASS had the capability of

continuing a classification by reading an input statistics

file from a previous execution.

.. User Input

The user specifies the input and output image iames,

the output statistics file name, and the following parame-

ters [Ref. 20:p. ISOCLASS-1 to ISOCLASS-2]:

" MAXIT - Maximum number of iterations.

" DLMIN - Two clusters whose means are closer than DLMIN
are combined.

" NMIN - Minimum number of members desired in any cluster.
Clusters that have less than NMIN members are deleted.

* STDMAX - Any cluster whose standard deviation is greater
than STDMAX and whose number of members is greater than
2(NMIN + 1) is split.

" MAXCLS - Maximum number of clusters.

" CHNTHS - Threshold for chaining clusters.

2. Algorithm Description

ISOCLASS operates as follows [Ref. 20:pp. ISOCLASS-2

to ISOCLASS-3):

151



• Step 1: ISOCLASS reads the initial cluster centroids
from the statistics file, or assumes that all of the
data are a single cluster and computes the mean and
standard deviation vectors. The mean vector is split
(see below).

• Step 2: Data is assigned to clusters using the minimum
cityblock distance rule.

" Step 3: Cluster means and standard deviations are
computed.

" Step 4: If MAXIT has been reached, go to step 9.

" Step 5: All clusters with fewer than NMIN members are
deleted.

" Step 6: The type of iteration, split or combine, is
determined (see below).

• Step 7: Cluster centroids are split or combined (de-
pending on the type of iteration).

" Step 8: Go to step 2.

* Step 9: Statistics are computed and a summary is print-
ed. The statistics are stored in the output statistics
file.

" Step 10: The image is chained (see below).

a. SplittinQ Clusters

A cluster is split in the jth band if the clus-

ter's maximum standard deviation is in the jth band, the

standard deviation in the jth band is greater than STDMAX,

and the cluster has more than 2(NMIN + 1) members. [Ref.

20:pp. ISOCLASS-3 to ISOCLASS-4] On a given iteration, all

clusters that meet the criteria are split, as long as the

maximum number of clusters has not been reached. Once the
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maximum number of clusters has been reached, classification

continues without the creation of new clusters.

b. Determining the TMDe of Iteration

ISOCLASS begins with a sequence of split opera-

tions. [Ref. 20:p. ISOCLASS-5) This sequence ends when at

least 80 percent of the clusters have standard deviations

less than STDMAX. At that point, the operations alternate

between combine and split operations until the last itera-

tion, which is always a split operation. The initial se-

quence of split operations is to initialize the cluster

centers. The sequence of initial split operations is short-

ened considerably if the initial cluster centers are provid-

ed in an input statistics file.

c. Chaining Clusters

The last step is to chain all clusters with

intercluster distances less then CHNTHS. [Ref. 20:p. ISO-

CLASS-5] The chaining procedure was adopted because the

minimum variance procedure used in ISOCLASS tends to form

ellipsoidal clusters with Gaussian distributions. While the

Gaussian distribution is natural and is normally satisfacto-

ry, there could also be natural groupings of data that are

oddly shaped which cannot be approximated by a Gaussian

distribution.

The statistics of the chained clusters are not

calculated because the chained cluster cannot be represented
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by a Gaussian distribution. [Ref. 20:p. ISOCLASS-5] The

chained clusters are not combined in the classified image.

Instead, a message is printed in the classification summary

to indicate that clusters meet the chaining criteria.

E. MINDIST

MINDIST performs a supervised classification of a multi-

band image based on minimum distance from class means.

(Ref. 20:p. MINDIST-1] It has an option for specifying the

maximum distance a pixel can be from the nearest cluster's

center and still be assigned to that cluster (this can be

used for classifying pixels as "unknown," too far from any

cluster).

MINDIST can be used to improve on the results of the

unsupervised clustering algorithms, either by discarding

pixels that are too far from cluster centroids or by reclas-

sifying the image using a different distance rule.

1. User Input

The user specifies the input and output image names,

the output statistics file name, and the following parame-

ters [Ref. 20:p. MINDIST-1 to MINDIST-2]:

MAXDIST: The maximum distance a pixel can be from the
nearest cluster centroid and still be assigned to. that
cluster. The options are for a pixel to be assigned to
the nearest cluster no matter how far away, for the user
to supply a value for each class, and for a single
maximum distance for all classes. If the pixel is
greater than MAXDIST away from the nearest cluster
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centroid, it is assigned a value of 0, signifying an

unclassified pixel.

" WEIGHTS: Weights to apply to each input image band.

" METRIC: Specifies the measure used to calculate dis-
tance from the cluster centers. The CITYBLOCK and the
EUCLIDEAN distance measures are available.

2. Algorithm Description

Each pixel is assigned to a cluster based on the

selected distance rule.

The CITYBLOCK distance rule operates as follows

[Ref. 20:p. MINDIST-2 to MINDIST-3]:

n

CD3 - E Wix- I-L 1J (2)
1-1

where CD, is the "city block" distance between pixel x and

the mean of cluster j, n is the number of bands in the

image, x, is the value of pixel x in band i, gij is the mean

in band i of class j, and W is the weight assigned to band

i.

The EUCLIDIAN distance rule operates as follows

[Ref. 20:p. MINDIST-2 to MINDIST-3]:

12
EDj - ((x3)j)2 (3)
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where EDj is the Euclidean distance between pixel x and the

mean of cluster j, n is the number of bands in the image, xi

is the value of pixel x in band i, ij is the mean in band i

of class j, and W, is the weight assigned to band i.

The output pixel is assigned to the class j which

has the minimum distance as calculated using the chosen

distance rule. [Ref. 20:p. MINDIST-3] If MAXDIST was

selected to classify pixels as "unknown" and the minimum

distance is greater than MAXDIST, then the output pixel is

assigned a value of 0.
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